

INTRODUCTION
TO
ULab

Scilab Group

INRIA Meta2 Project/ENPC Cergrene

INRIA - Unité de recherche de Rocquencourt - Projet Meta2

Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)
E-mail : scilab@inria.fr

Contents

1 Introduction

1.1 Whatis Scilab L
1.2 Software Organization
1.3 Installing Scilab. System Requirements
1.4 Scilab at a Glance. A Tutorial
1.4.1 Getting Started
1.4.2 Editing a command line 0L,
1.4.3 Buttons L
1.4.4 Customizing your Scilab o oL
1.4.5 Sample Session for Beginners
2 Data Types
2.1 Special Constants L
2.2 Constant Matrices
2.3 Matrices of Character Strings
2.4 Polynomials and Polynomial Matrices
2.5 Boolean Matrices L
2.6 Lists, Linear Systems
2.7 Functions (Macros)
2.8 Libraries
2.9 Objects o e
3 Programming
3.1 Programming Tools.
3.1.1 Comparison Operators
3.1.2 Loops . . .
3.1.3 Conditionals
3.2 Defining and Using Functions
3.2.1 Function Structure
3.2.2 Loading Functions
3.2.3 Global and Local Variables
3.2.4 Special Function Commands
3.3 Definition of Operations on New Data Types
3.4 Debbuging
4 Basic Primitives
4.1 The Environment and Input/Output
4.1.1 The Environment

18
18
18
23
26
27
28
34
35
35

36
36
36
37
38
39
39
40
40
42
43
46

4.1.2 Startup Commands by the User.
4.1.3 Input and Output L
4.2 Help o e
4.3 Nonlinear Calculation
4.3.1 Externals
4.3.2 Nonlinear Primitives o Lo
4.4 Fortran or C Interface
4.5 XWindow Dialog L
4.6 Maple Interface
4.7 System Interconnection L oL
4.8 Converting Scilab Functions to Fortran Routines
5 Graphics
5.1 The Graphics Window
52 The Media.
5.3 2D Plotting e
5.3.1 Basic 2D Plotting
5.3.2 Specialized 2D Plottings oL
5.3.3 Captions and Presentation
5.3.4 Plotting Some Geometric Figures
5.3.5 Writing by Plotting o L
5.3.6 Manipulating the Plot and Graphics Context
54 Some Examples
55 3D Plotting
5.5.1 Generic 3D Plotting L
5.5.2 Specialized 3D Plottingo oo
5.5.3 Mixing 2D and 3D graphics oo
5.5.4 Sub-windows
55.5 A Setof Figures
5.6 Printing and Inserting Scilab Graphics in IATpX
5.6.1 Window to Paper.
5.6.2 Creating a Postscript File o0
5.6.3 Including a Postscript File in INXTpX
5.6.4 Postscript by Using Xfig L.
5.6.5 Encapsulated Postscript Files L.

6 Maple to Scilab Interface

6.1 Maple2scilab
6.1.1 Simple Scalar Example. . . .
6.1.2 Matrix Example

A A demo session

ii

47
48
48
48
48
49
52
53
54
54
o7

59
59
60
61
61
62
62
63
63
63
64
66
66
66
67
67
67
68
68
68
70
73
74

75
75
76
76

79

Chapter 1

Introduction

1.1 What is Scilab

Since the introduction of the “classic” (Fortran) MATLAB by C. Moler in 1982 there have
been a number of interactive scientific

software packages which have been developed for system control and signal processing
applications.

Developed at INRIA, Scilab which is one of the most elaborate of these packages is
freely distributed in source code format (see the file notice.tex). and runs in Unix/Xwindow
environments. Its libraries and most of the interpreter are written in Fortran for compati-
bility with numerical librairies. The graphic facilities and the Unix interface are written in
C. Scilab is made of three distinct parts: an interpreter, libraries of functions (Scilab pro-
cedures) and libraries of Fortran and C routines. These routines (which, strictly speaking,
do not belong to Scilab but are interactively called by the interpreter) are of independent
interest and most of them are available through Netlib. A few of them have been slightly
modified for better compatibility with Scilab’s interpreter. A useful tool distributed with
Scilab is intersci which is a set of routines that allow users to easily add new primitives
to Scilab i.e. to add new modules of Fortran or C code into Scilab making it easy to
customize.

A key feature of the MATLAB syntax is its ability to handle matrices: basic matrix
manipulations such as concatenation, extraction or transpose are immediately performed
as well as basic operations such as addition or mutiplication. Scilab’s aims are the follo-
wing: first to use the MATLAB syntax for more complex objects than numerical matrices,
(e.g. automatic control people may want to manipulate transfer matrices) and second to
be an open interface to numerical libraries (e.g. a specific routine can be either called
dynamically from Scilab or included in the package as a new primitive).

Scilab is an interactive, interpreted software package (with a syntax similar to the
MATLAB one) which has a number of powerful features:

e lists

e symbolic manipulation of polynomials and polynomial matrices
e symbolic manipulation of linear and non-linear systems

e non-linear calculation: simulation and optimization

e casy interfacing with fortran and C codes

CHAPTER 1. INTRODUCTION 2

The list structure allows a natural symbolic representation of complicated mathema-
tical objects such as transfer functions and linear systems (see Section 2.6).

Polynomials, polynomials matrices and transfer matrices are also defined and Scilab
allows the definition and manipulation of these objects in a natural, symbolic fashion (see
Section 2.4). The syntax used for manipulating these matrices is identical to that used for
manipulating constant vectors and matrices.

Scilab provides a variety of powerful primitives for the analysis of non-linear systems.
Integration of explicit and implicit systems can be accomplished numerically. There exist
numerical optimization facilities for non linear optimization (including non differentiable
optimization), quadratic optimization and linear optimization.

Scilab has an open programming environment where the creation of functions and
libraries of functions is completely in the hands of the user (see Chapter 3). Functions
are recognized as data objects in Scilab and, thus, can be manipulated or created as other
data objects. For example, functions can be passed as arguments of other functions.

In addition Scilab supports a character string data type which, in particular, allows the
automatic creation of functions. Matrices of character strings are also manipulated with
the same syntax as ordinary matrices. Finally, Scilab is easily interfaced with Fortran or
C subprograms. This allows use of standardized packages and libraries in the interpreted
environment of Scilab.

The general philosophy of Scilab is to provide the following sort of computing environ-
ment:

e To have data types which are varied and flexible.
e To have a syntax which is natural and easy to use.

e To provide a reasonable set of primitives which serve as a basis for a wide variety of
calculations.

e To have an open programming environment where new primitives are easily added.

e To support library development through “toolboxes” of functions devoted to specific
applications (linear control, signal processing, networks analysis, non-linear control,
etc.)

The objective of this introduction manual is to give the user an idea of what Scilab
can do. On line documentation on all Scilab functions is available.

1.2 Software Organization

Scilab is divided into a set of directories. The main directory SCIDIR contains the fi-
les scilab.star (startup file), the copyright file notice.tex, and the file configure
(see(1.3)). The subdirectories are the following:

e bin is the directory of the executable files. The executable code of Scilab, scilex,
is there. In particular, this directory contains Shell scripts for managing or printing
Postscript/IATpX files produced by Scilab

e demos is the directory of Scilab demos. The file alldems.dem allows to add a new
demo which can be run by clicking in “demo”. This directory contains the codes
corresponding to various demos. They are often useful for inspiring new users. Note

CHAPTER 1. INTRODUCTION 3

that running a graphic function without input parameter provides an example of
use for this function (for instance plot2d() displays an example for using plot2d
function).

e doc is the directory of the Scilab documentation: IATEX, dvi and Postscript files.
This documentation is SCIDIR/doc/intro/intro.tex. See also the manual (on-line
help) in the directory SCIDIR/man

e geci contains source code and binaries for GeCI which is an interactive communica-
tion manager created in order to manage remote executions of softwares and allow
exchanges of messages beetwen those softwares. It offers the possibility to exploit
numerous machines on a network, as a virtual computer, by creating a distributed
group of independent softwares. GeClI is used for the link of Xmetanet with Scilab.

e imp is the directory of the routines managing the Postscript files for print.
e libs contains Scilab libraries (compiled code).

e macros contains the libraries of Scilab functions which are available on-line. New
libraries can easily be added (see the Makefile). This directory is divided into a
number of subdirectories which contain “Toolboxes” for control, signal processing,
etc... Strictly speaking Scilab is not organized in toolboxes : functions of a specific
subdirectory can call functions of other directories; so, for example, the subdirectory
“signal” is not self-contained but its functions are all devoted to signal processing.

e man is the directory containing the manual (Unix manual), divided into submanu-
als, corresponding to the on-line help and to a IATpXformat of the Scilab reference
manual. The INTpX code is produced by a translation of the Unix format Scilab
manual (see the subdirectory Man-General). To get information about an item enter
help item in Scilab or use the help window facility obtained with help button. To
get, functions corresponding to a key word enter apropos key-word or use apropos
in the help window.

e maple is the directory which contains the source code of Maple functions which
allow the transfer of Maple objects into Scilab functions. For efficiency, the transfer
is made through Fortran code generation.

e routines is a directory with contains the source code of all the numerical routines.
The subdirectory default contains the source code of routines which are useful
to customize Scilab. In particular “external” routines for ODE/DAE solvers or
optimization should be included here (see e.g. the file fydot.f, interface Scilab-
Fortran for ode simulation). Note that if, for example, you want to solve an ode,
the right hand side function can be a Scilab function or a C or Fortran subroutine.
This Fortran subroutine can be dynamically linked to Scilab or put into the specific
file fydot.f of the default directory. This function is then inside your version of
Scilab.

e intersci contains the facility provided for add new Fortran or C primitives to Scilab.
e scripts is the directory which contains the source code of shell scripts files.

e tests : this directory contains evaluation programs for testing Scilab’s installation
on a machine. The file “demos.tst” tests all the demos.

CHAPTER 1. INTRODUCTION 4

e tmp : some examples written by users for courses ... have been added in this direc-
tory.

e util contains some utility functions for calling Scilab as a fortran routine or for
making the documentation

e xless is a file browsing tool developped at Berkeley University.

e xmetanet is the directory which contains xmetanet, a graphic display for networks.
Type metanet () in Scilab to use it.

1.3 Installing Scilab. System Requirements

Scilab is distributed in source code format; binaries for several popular Unix-XWindow
systems are also available: Dec Alpha (OSF 3.0), Dec Mips (ULTRIX 4.2), Sun Sparc
stations (Sun OS 4.1.3), Sun Sparc stations (Sun Solaris 2.3), HP9000 (HP-UX 9.01), SGI
Mips Irix 5.2, IBM-RS6000 (AIX 3.2), PC 486 (Slackware Linux 2.0.2 — XFree86 3.1).

The installation requirements are the following :

- for the source version: Scilab requires approximately 75Mb of disk storage to unpack
and install (all sources included). You need X Window (X11R4 or X11R5, C compiler
and Fortran compiler (or f2¢). If you run X11R4, you also need Athena Widgets libraries
libXaw.a and libXmu.a.

- for the binary version: the minimum for running Scilab (without sources) is about
20 Mb when decompressed. The versions for Dec Alpha, Dec Mips, Sun OS, HP9000 and
IBM-RS6000 are statically linked and in principle do not require a fortran compiler. The
versions for Sun Solaris, SGI and PC Linux are dynamically linked.

The main part of the memory in Scilab is a pile corresponding to the usual Fortran
behaviour. In some parts Scilab is using dynamic allocation (in particular for the sparse
matrices). We have chosen 2 mega-words (double float) for the size of the pile. Of course
with the source code version a user can easily change this size and (decrease or) increase
it up to the memory of his computer (parameter vsiz in the file routines/stack.h).

1.4 Scilab at a Glance. A Tutorial

1.4.1 Getting Started

Scilab is called by typing scilab in the directory SCIDIR/bin where SCIDIR denotes the
directory where Scilab is installed. Scilab can be launched in another directory with the
same command and a corresponding search path. This shell script runs Scilab in an
Xwindow environment (this script file can be invoked with specific parameters). You will
immediatly get the Scilab window with the following banner and prompt represented by
the --> :

Scilab-2.1 (10 February 1995)

CHAPTER 1. INTRODUCTION)

Copyright (C) 1989-95 INRIA

Startup execution:
loading initial environment

-=>

A first contact with Scilab can be made by clicking on Demos with the left mouse
button and clicking then on Introduction to SCILAB : the execution of the session is
then done by entering empty lines and can be stopped with the buttons Stop and Abort.

Several libraries (see the SCIDIR/scilab.star file) are automatically loaded.

To give the user an idea of some of the capabilities of Scilab we will give later a sample
session in Scilab.

1.4.2 Editing a command line

Before the sample session, we briefly present how to edit a command line. You can enter
a command line by typing after the prompt or clicking with the mouse on a part on a
window and recall it at the prompt in the Scilab window. At this moment you have the
classical Emacs commands at your disposal for modifying a command (Ctrl-<chr> means
hold the CONTROL key while typing the character <chr>), for example:

e Ctrl-p recall previous line

e Ctrl-n recall next line

e Ctrl-b move backward one character

e Ctrl-f move forward one character

e Delete delete previous character

e Ctrl-h delete previous character

e Ctrl-d delete one character (at cursor)
e (Ctrl-a move to beginning of line

e Ctrl-e move to end of line

e Ctrl-k delete to the end of the line

e (Ctrl-u cancel current line

e Ctrl-y yank the text previously deleted
e Iprev recall the last command line which begins by prev

e Ctrl-c interrupt Scilab and pause after carriage return. (Only functions can be
interrupted). Clicking on the stop button enters a Ctrl-c.

CHAPTER 1. INTRODUCTION 6

As said before you can also cut and paste using the mouse. This way will be useful
if you type your Scilab commands in an editor. Another way to “load” files containing
Scilab statements is available with the File Operations button.

1.4.3 Buttons

The Scilab window has the following buttons.

e Stop interrupts execution of Scilab and enters in pause mode

e Resume continues execution after a pause entered as a command or generated by
the Stop button

e Abort aborts execution after one (or several) pause, and returns to top-level prompt
e Restart clears all variables and executes startup files

e Quit quits Scilab

e Kill kills Scilab shell script

e Demos for interactive run of some demos

e File Operations facility for loading functions or data into Scilab, or executing script
files. Note the following change w.r.t. the previous release : using this button implied
to change the working directory to the directory of the location of the loaded file.
This fact could be confusing and the use of this button does not change anymore
the working directory.

e Help : invokes on-line help with the tree of the man and the names of the correspon-
ding items. It is possible to type directly help <item> in the Scilab window.

e |- : increases or decreases the number of the active window

e Raise Window : exposes the window corresponding to the indicated number and
creates one or several windows if necessary

e Set Window : the window corresponding to the indicated number becomes active
(and creates one or several windows if necessary)

Note that the command SCIDIR/bin/scilab -nw invokes Scilab in the “no-window”
mode.

1.4.4 Customizing your Scilab

As usual for many softwares the parameters of the different windows opened by Scilab can
be easily changed. The way for doing that is to edit the files contained in the sub-directory
X11-defaults. The first possibility is to directly change these files but the same modificati-
ons will be needed for the further releases. The right way is to copy the right lines with the
modifications in the .Xdefaults file of one’s own home directory. These modifications are
activated by starting again Xwindow or with the command xrdb .Xdefaults. Scilab will
read the .Xdefaults file: the lines of this file will cancel and replace the corresponding
lines of X11-defaults.
A simple example :

CHAPTER 1. INTRODUCTION 7

Xscilab.color*Scrollbar.background:red
Xscilab*vpane.height: 500
Xscilab*vpane.width: 500

in .Xdefaults will change the 500x650 window to a square window of 500x500 and
the scrollbar background color changes from green to red.
1.4.5 Sample Session for Beginners

We present now some simple commands. A command ends with a semi-colon or a car-
riage return. At the carriage return all the commands typed since the last prompt are
interpreted. The semi-colon before the prompt is optional.

-->//Two commands on the same line

-—>c=[1 2];b=1.5
b =

1.5
-->//A command on several lines

-->u=1000000.000000* (a*sin(A))**2+2000000.000000*a*b*sin (A)*cos (A)+1000000.000000* (b*cos
u =

81268.994

-=>u=1000000.000000* (a*sin(A)) **2+. ..
2000000.000000*a*b*sin(A)*cos(A)+. ..
1000000.000000%* (b*cos (A)) **2

u =

81268.994

Give the values of 1 and 2 to the variables a and A . The semi-colon at the end of the
command suppresses the display of the result. Note that Scilab is case-sensitive. Then
two commands are processed and the second result is displayed because it is not followed

CHAPTER 1. INTRODUCTION 8

by a semi-colon. The last command shows how to write a command on several lines by
using “...”. This sign is only needed in the on-line typing for avoiding the effect of the
carriage return. The chain of characters which follow the // is not interpreted by Scilab
(it is a comment line).

-—>a=1;b=1.5;

——>2%a+b**2
ans =

4.25
-->//We have now created variables and can list them by :

-->who
your variables are...

ans b a bugmes yAY T TMPDIR
SCI scicoslib xdesslib utillib tdcslib siglib
s2flib roblib percentlib optlib metalib elemlib
polylib autolib armalib alglib hz %s %nan
%inf %t %E %heps %io %i %e
hpi
using 3066 elements out of 1000000.

and 34 variables out of 499

We get the list of previously defined variables a b ¢ A together with the initial envi-
ronment composed of the different libraries and some specific “permanent” variables.

Below is an example of an expression which mixes constants with existing variables.
The result is retained in the standard default variable ans.

-->sqrt([4 -4])
ans =

Calling a function (or primitive) with a vector argument. The response is a complex
vector.

-=>p=poly([1 2 3],’z’,’coeff’)
p =

CHAPTER 1. INTRODUCTION 9

2
1 + 2z + 3z

-->//p is the polynomial in z with coefficients 1,2,3.
-->//p can also be defined by :

-->s=poly(0,’s’) ;p=1+2%s+s”2

-->M=[p, p-1; p+l ,2]

M —3
| 2 2 1
! 1 +2s + s 2s + s |
! !
! 2 !
! 2 +2s + s 2 !
—-—>det (M)
ans =

2 3 4

2 -4s - 4s - s

Definition of a polynomial matrix. The syntax for polynomial matrices is the same
as the one for matrices of constants. Calculation of the determinant of the polynomial
matrix by the det function.

-->z=poly(0,’z’);

-—>f=[1/s ,(s+1)/(1-8)
s/p s s°2]

CHAPTER 1. INTRODUCTION 10

! 1 1 +s |
| - e 1
! s 1 -5 !
] I
| 2 I
] s s I
I — - I
] 2 I
! 1+ 2s + s 1 !

Definition of a matrix of rational polynomials. The internal representation of f is a
list 1ist(’r’ ,num,den) where num and den are two matrix polynomials.

-->pause

-1->pt=return(s*p)

-->pt

Here we move into a new environment using the command pause and we obtain the
new prompt -1-> which indicates the level of the new environment (level 1). All variables
that are available in the first environment are also available in the new environment.
Variables created in the new environment can be returned to the original environment by
using return. Use of return without an argument destroys all the variables created in
the new environment before returning to the old environment. The pause facility is very
useful for debugging purposes.

-=>f21=f(2,1) ;v=0:0.01:%pi;frequencies=exp (%4i*v) ;
-->response=freq(£f21(2),f21(3),frequencies);
-->plot2d(v’,abs(response)’,[-1],’011’,’ *,[0,0,3.5,0.7],[5,4,5,7]1);

-->xtitle(’ ’,’radians’,’magnitude’);

CHAPTER 1. INTRODUCTION 11

Definition of a rational polynomial by extraction of an element of the matrix £ defined
above. This is followed by the evaluation of the rational polynomial at the vector of
complex frequency values defined by frequencies. The evaluation of the polynomial is
done by the primitive freq. numer(£21) is the numerator polynomial and denom(£21)
is the denominator polynomial. The visualization of the resulting evaluation is made by
using the command plot2d (see Figure ?7).

ans =

The function horner allows the user to make a (possibly symbolic) change of variables
for a polynomial (for example, to perform the bilinear transformation as seen above).

__>A=[_1yo;1y2] ;B=[112;213] ;C=[1,0];

-->S1=syslin(’c’,A,B,C);

-—>s82tf (S1)

ans =

! 1 2 !
| e e |
! 1 + s 1+s !

Definition of a linear system in state-space representation. The function syslin defines
here the continuous time (’c?) system S1 with state-space matrices (A,B,C). The function
ss2tf transforms S1 into transfer matrix representation.

CHAPTER 1. INTRODUCTION

-->s=poly(0,’s’);

-->R=[1/s,s/(1+s),s8"2]
R =

-->S1=syslin(’c’,R);
-->tf2ss(S1)
ans =
ans (1) (state-space system:)

1ss

ans(2) = A matrix

' - 0.5 -0.5
I - 0.5 -0.51
ans(3) = B matrix =
I = 0.7071068 0.7071068 0. !

o

.7071068 0.7071068 0. !

ans (4)

C matrix

' - 1.4142136 0. !

ans(5) = D matrix =
! 2 1
! 0 1 s |
ans(6) = X0 (initial state) =
| 0. !
| 0. !
ans(7) = Time domain =

12

CHAPTER 1. INTRODUCTION 13

Definition of the rational matrix R. S1 is the continuous-time linear system with (im-
proper) transfer matrix R. t£2ss puts S1 in state-space representation with a polynomial
D matrix. Note that linear systems are represented by special lists (with 7 entries).

-->s11=[81;2*S1+eye]

sll =

| 2
| 1 S S !
. - _____ - I
] s 1+ s 1 !
| I
| 21
| 2 + s 2s 2s !
N e _—_
| s 1 + s 1 !
-->size(sl11)

ans =

! 2. 3. !
-->size(tf2ss(sll))

ans =

! 2. 3. !

sl1 is the linear system in transfer matrix representation obtained by the parallel
inter-connection of S1 and 2*S1 +eye. The same syntax is valid with S1 in state-space
representation.

-->deff (’ [Cl]=compen(S1,Kr,Ko)’,[’[A,B,C,D]=abcd(S1);’;
’A1=[A-B*Kr ,BxKr; O0*A ,A-Ko*C]; Id=eye(A);’;
’B1=[Id ,0¥Ko; Id ,-Ko 1;’;

’C1=[C ,0%C];Cl=syslin(’’c’’,A1,B1,C1)’])

—-=>comp (compen)

On-line definition of a function, called compen which calculates the state space repre-
sentation (C1l) of a linear system controlled by an observer with gain Ko and a controller

CHAPTER 1. INTRODUCTION 14

with gain Kr. Note that matrices are constructed in block form using other matrices. The
function compen is then compiled by comp.

-->A=[1,1 ;0,1];B=[0;1];C=[1,0];S1=syslin(’c’,A,B,C);

-->Cl=compen(S1,ppol(A,B,[-1,-11),...
ppol(A’,C’, [-1+%i,-1-%1]1)) ;

-=>f=C1(2),spec(f)

f =
! 1. 1. 0. 0. !
1 -4 - 3. 4. 4.1
! 0. 0. - 3. 1.1
! 0. 0. - 5. 1.1
ans =
1 -1. !
' - 1. !
P -1, +1 !
' -1, - !

Call to the function compen defined above where the gains were calculated by a call
to the primitive ppol which performs pole placement. The resulting £ matrix is displayed
and the placement of its poles is checked using the primitive spec which calculates the
eigenvalues of a matrix. (The function compen is defined here on-line by deff as an example
of function which receive a linear system (S1) as input and returns a linear system (C1)
as output. In general Scilab functions are defined in files and loaded in Scilab by getf).

——>//Saving the environment in a file named : myfile
-->save(’myfile’)

-->//Request to the host system to perform a system command
-—>unix_s(’rm myfile’)

-->//Request to the host system with output in this Scilab window

-—>unix_w(’date’)
Tue Jul 16 00:43:36 1996

-—>

CHAPTER 1. INTRODUCTION 15

Relation with the Unix environment and an error message: command is not interpre-
table by the system since the variable q is unknown.

-—>foo=[" subroutine foo(a,b,c)’;
’ c=atb’;
’ end’ 1;

—-—>unix_s(’\rm foo.f’)

!-—error 10000
unix_s: rm: foo.f: No such file or directory
at line 23 of function unix_s called by :
unix_s(’\rm foo.f’)

-—>write(’foo.f’,fo0);
-—>unix_s(’make foo.0’)

-->1ink(’foo.0’,’fo0’)
I-—error 9999
Dynamic link not implemented

l--error 73
error while linking

-—>deff (’ [c]=myplus(a,b)’,...
’c=fort(’ ’foo”,a,1,”r”,b,2,”r”,”out”, [1,1] ,3,”1’”)’)

-->myplus(5,7)
c=fort(’foo’,a,1,’r’,b,2,’r’,’out’, [1,1],3,’r’)

l-—error 50
subroutine not found : foo
at line 2 of function myplus called by :
myplus(5,7)

Definition of a column vector of character strings defining a Fortran subroutine. The
routine is compiled (needs a compiler), dynamically linked to Scilab, and interactively
called by the function myplus.

-—>deff (’ [ydot]=£f(t,y)’, ’ydot=[a-y(2)*y(2) -1;1 0]*y’)

-—>a=1;comp(f);y0=[1;0];t0=0;instants=0:0.02:20;

CHAPTER 1. INTRODUCTION 16

-->y=ode(y0,t0,instants,f);
-->plot2d(y(1,:)’,y(2,:)’,[-1],’011,> *,[-3,-3,3,3],[10,2,10,2])

-->xtitle(’Van der Pol’)

Definition of a function which calculates a first order vector differential f(t,y). This
is followed by the definition of the constant a used in the function and the function is
compiled. The primitive ode then integrates the differential equation defined by f (t,y)
for y(0) = (1;0) at ¢ = 0 and where the solution is given at the time values ¢ =
0,.02,.04,...,20. The result is plotted in Figure ?? where the first element of the in-
tegrated vector is plotted against the second element of this vector.

-->m=[’a’ ’cos(b)’;’sin(a)’ ’c’]

m -

la cos(b) !
! !
Isin(a) c !
——>m*m’

|-—error 43
not implemented in scilab....

-=>deff (’ [x]=Vicmc(a,b)’, [’ [1,m]=size(a); [m,n]=size(b);x=[];";
>for j=1:n,y=[1;’;
>for i=1:1,t=’’ ’7;’;
>for k=1:m;’;
’if k>1 then t=t+’’+(’+a(i,k)+’7)*’’+ 2’ +b(k,j)+’’)’7;7;
‘else t=22(77 + a(i,k) + ?2)*?2 + 22 + b(k,j) + ??)?7;7;
’end,end;’;
y=[y;t],end;’;
’x=[x y],end,’])

-—>m*m’
ans =

'(a)*(a)+(cos(b))*(cos(b)) (a)*(sin(a))+(cos(b))*(c) !
! !

I (sin(a))*(a)+(c)*(cos(b)) (sin(a))*(sin(a))+(c)*(c) !

Definition of a matrix containing character strings. By default, the operation of sym-
bolic multiplication of two matrices of character strings is not defined in Scilab. The

CHAPTER 1. INTRODUCTION 17

(on-line) function definition for %cmc defines the multiplication of matrices of character
strings (note that the double quote is necessary because the body of the deff contains
quotes inside of quotes). The % which begins the function definition for %cmc allows the
definition of an operation which did not previously exist in Scilab, and the name cmc
means “chain multiply chain”. This example is not very useful: it is simply given to show
how operations can be defined on complex data structures.

-—>deff (’ [y]=calcul (x,method)’,’z=method(x) ,y=poly(z,’’x’’)’)
-—>deff (’ [z]=methl1(x)’,’z=x")
-—>deff (’ [z]=meth2(x)’,’z=2%x")

-—>calcul([1,2,3] ,methl)
ans =

2 3
-6 + 11x - 6x + X

-->calcul([1,2,3] ,meth2)
ans =

2 3
- 48 + 44x - 12x + X

A simple example which illustrates the passing of a function as an argument to another
function. Scilab functions are objects which may be defined, loaded, or manipulated as
other objects such as matrices or lists.

-->quit

Exit from Scilab.
............................... xinit(’d1-7.ps’); exec(’d1-4.code’,-1); exec(’d1-5.code’,-1);
£21=£(2,1);v=0:0.01:response=freq(f21(2),f21(3),frequencies); plot2d(v’,abs(response)’,-1],’011"’
’,[0,0,3.5,0.7],[5,4,5,7]); xtitle(’ ’,’radians’,’magnitude’); A Simple Responsefl.1

xinit(’d1-14.ps’); deff(’[ydot]|=f(t,y)’,’'ydot=[a-y(2)*y(2) -1;1 0]*y’) a=1;comp(f); y=ode([1;0],0,0:0.02:2(
plot2d(y(1,:)",y(2,:)’,[-1],°011";" *,[-3,-3,3,3],[10,2,10,2]) xtitle(’Van der Pol’) Phase Plotf1.2

Chapter 2

Data Types

Scilab recognizes several primitive data types. Scalar objects are constants, booleans,
polynomials, strings and rationals (quotients of polynomials). These objects in turn allow
to define matrices which admit these scalars as entries. Other basic objects are lists and
functions. Only constant and boolean sparse matrices are defined. The objective of this
chapter is to describe the use of each of these data types.

2.1 Special Constants

Scilab provides special constants %1, %pi, %e, and %eps as primitives. The %i constant re-
presents /—1, %pi is m = 3.1415927 - - - , %e is the trigonometric constant e = 2.7182818 - - -,
and %eps is a constant representing the precision of the machine (%eps is the biggest num-
ber for which 1 4 %eps = 1). %inf and %nan stand for “infinity” and “NotANumber”
respectively.

Finally boolean constants are %t and %f which stand for “true” and “false” respectively.
Note that %t is the same as 1==1 and %f is the same as ~%t.

These variables are considered as “predefined”. They are protected, cannot be deleted
and are not saved by the save command. It is possible for a user to have his own “pre-
defined” variables by using the predef command. The best way is probably to set these
special variables in his own startup file <home dir>/.scilab.

2.2 Constant Matrices

Scilab considers a number of data objects as matrices. Scalars, vectors, and matrices
whose entries are either real or complex are all considered as matrices. The details of the
use of these objects are revealed in the following Scilab sessions.

Scalars Scalars are either real or complex numbers. The values of scalars can be assigned
to variable names chosen by the user.

-=> a=5+2%}i
a =

5. + 2.1

--> B=-2+%i;

18

CHAPTER 2. DATA TYPES

-=> b=4-3%}1i

--> axb
ans =

26. - 7.1

-->a*B
ans =

-12. + 1

19

Note that Scilab evaluates immediately lines that end with a carriage return. Instructions
that end in a semi-colon are evaluated but are not displayed on screen. Scilab is case

sensitive now (Version 2.0 was not case sensitive).

Vectors The usual way of creating vectors is as follows

-=> v=[2,-3+%1i,7]
V —3

! 2. - 3. +1 7. !

|
~N W N

|

[

CHAPTER 2. DATA TYPES 20

-=> v’+w
ans =

- 1. !

-=> V*W
ans =

18.

-=> w’.*v
ans =

! - 6. 8. - 6.1 14. !

Notice that vector elements that are separated by commas (or by blanks) yield row vectors
and those separated by semi-colons give column vectors. Note also that a single quote is
used for transposing a vector (one obtains the complex conjugate for complex entries).
Vectors of same dimension can be added and subtracted. The scalar product of a row and
column vector is demonstrated above. Element-wise multiplication (.*) and division (./)
is also possible as was demonstrated.

Note with the following example the role of the position of the blank:

-=>v=[1 +3]

Vectors of elements which increase or decrease incrementely are constructed as follows

CHAPTER 2. DATA TYPES 21

--> v=5:-.5:3
V —3

! 5. 4.5 4. 3.5 3. !

The resulting vector begins with the first value and ends with the third value stepping
in increments of the second value. When not specified the default increment is one. A
constant vector can be created using the ones and zeros facility

--> v=[1 5 6]

V -

! 1 5. 6. !
-—> ones(v)

ans =

! 1 1. 1. !

--> ones(v’)
ans =

-—> ones(1:4)
ans =

--> 3%ones(1:4)

ans =
! 3 3. 3 3. !
-->zeros(v)

ans =

! 0 0. 0. !

-—>zeros(1:5)
ans =

Notice that ones or zeros replace its vector argument by a vector of equivalent dimensions
filled with ones or zeros.

CHAPTER 2. DATA TYPES 22

Matrices Row elements are separated by commas or spaces and column elements by
semi-colons. Multiplication of matrices by scalars, vectors, or other matrices is in the
usual sense. Addition and subtraction of matrices is element-wise and element-wise mul-
tiplication and division can be accomplished with the .* and ./ operators.

--> a=[2 1 4;5 -8 2]
a =

--> b=ones(2,3)

b =
! 1. 1. !
! 1. 1. !
--> a.x*xb

ans =

! 2 1. 4. !
! 5 - 8. 2. !
--> axb’

ans =

! 7. 7. !

P -1. -1."

Notice that the ones operator with two real numbers as arguments separated by a comma
creates a matrix of ones using the arguments as dimensions (same for zeros). Matrices
can be used as elements to larger matrices. Furthermore, the dimensions of a matrix can
be changed.

--> a=[1 2;3 4]
a =

--> b=[56 6;7 8]

-—> ¢=[9 10;11 12]
C =

CHAPTER 2. DATA TYPES 23

! 9 10. !
! 11 12. !
--> d=[a,b,c]
d —3
! 1 2 5 6. 9. 10. !
! 4 7 8 11. 12. !

--> e=matrix(d,3,4)

e =

! 1 4 6. 11. !
! 5 8. 10. !
! 2 7 9. 12. !
-->f=eye(e)

f =

! 1 0 0. 0. !
! 1. 0 0. !
! 0 0. 1 0. !
-—>g=eye(4,3)

g =

! 1. 0. 0. !

! 0. 1. 0. !

! 0. 0. 1. !

! 0. 0. 0. !

Notice that matrix d is created by using other matrix elements. The matrix primitive
creates a new matrix e with the elements of the matrix d using the dimensions specified
by the second two arguments. The element ordering in the matrix d is top to bottom and
then left to right which explains the ordering of the re-arranged matrix in e.

The function eye creates an m x n matrix with 1 along the main diagonal (if the
argument is a matrix e , m and n are the dimensions of e) .

Sparse constant matrices are defined through their nonzero entries (type help sparse
for more details). Once defined, they are manipulated as full matrices.

2.3 Matrices of Character Strings

Character strings can be created by using single quotes. Concatenation of strings is
performed by the + operation. Matrices of character strings are constructed as ordinary
matrices, e.g. using brackets. A very important feature of matrices of character strings
is the capacity to manipulate and create functions. Furthermore, symbolic manipulation

CHAPTER 2. DATA TYPES 24

of mathematical objects can be implemented using matrices of character strings. The
following illustrates some of these features.

-=> x=1;y=2;z=3;w=4;v=5;

> a=[’x’ zyz;azz ’W+V’]

a —3
Ix y |
| |
lz w+v !

--> at=trianfml(a)
at =

lz wt+v !
! !

10 zxy-x*(w+v) !

--> evstr(at)
ans =

Note that in the above Scilab session the function trianfml performs the symbolic trian-
gularization of the matrix a. The value of the resulting symbolic matrix can be obtained
by using evstr.

A very important aspect of character strings is that they can be used to automatically
create new functions (for more on functions see Section 3.2). An example of automatically
creating a function is illustrated in the following Scilab session where it is desired to study
a polynomial of two variables s and t. Since polynomials in two independent variables are
not directly supported in Scilab, we can construct a new data structure using a list (see
Section 2.6). The polynomial to be studied is (2 + 2t3) — (¢t + t2)s + ts? + s°.

-->getf ("macros/make_macro.sci");
-->s=poly(0,’s’);

-=>t=poly(0,’t’);

-=>p=1list (t72+2%t"3,-t-t"2,t,1+0%t) ;

-->pst=makefunction(p)
pst =

[pl=pst(t)

-—>pst

CHAPTER 2. DATA TYPES 25

pst =
[pl=pst(t)

-—>pst (1)
ans =

2 3
3 -2s + s + s

Here the polynomial is represented by the command which puts the coefficients of the
variable s in the list p. The list p is then processed by the function makefunction which
makes a new function pst. The contents of the new function can be displayed and this
function can be evaluated at values of t. The creation of the new function pst is accom-
plished as follows

function [newfunction]=makefunction(p)

n=size(p);

num=mulf (makestr(p(1)),’1’);

for k=2:n,
new=mulf (makestr(p(k)),’s” ’+string(k-1));
num=addf (num,new) ;

end,

text=’p=’+num;

deff (’<p>=newfunction(t)’,text),

function [str]=makestr(p)
n=degree(p)+1,
c=coeff (p),
str=string(c(1)),
x=part (varn(p),1),
xstar=x+’""’
for k=2:n,
ck=c(k),
if ck<>0 then,
str=addf (str,mulf (string(c(k)), (xstar+string(k-1))));
end;
end,

Here the function makefunction takes the list p and creates the function pst. Inside
of makefunction there is a call to another function makestr which makes the string which
represents each term of the new two variable polynomial. The functions addf and mulf
are for adding and multiplying strings (i.e. addf (x,y) yields the string x+y). Finally, the
essential command for creating the new function is the primitive deff. The deff primitive
creates a function defined by two matrices of character strings. Here the function p is
defined by the two character strings ’> [p]=newfunction(t)’ and text where the string
text evaluates to the polynomial in two variables.

CHAPTER 2. DATA TYPES 26

2.4 Polynomials and Polynomial Matrices

Polynomials are easily created and manipulated in Scilab. Manipulation of polynomial
matrices is essentially identical to that of constant matrices. The poly primitive in Scilab
can be used to specify the coefficients of a polynomial or the roots of a polynomial.

-=> p=poly([1l 2],’s’)
p —3
2
2 - 3s + s
--> g=poly([1l 2],’s’,’c?)
q —3
1+ 2s

-=> ptq
ans =

3 -s + s

-=> p*q
ans =

2 - 3s + s

Note that the polynomial p has the roots 1 and 2 whereas the polynomial q has the
coefficients 1 and 2. It is the third argument in the poly primitive which specifies the
coefficient flag option. In the case where the first argument of poly is a square matrix
and the roots option is in effect the result is the characteristic polynomial of the matrix.

-=> poly([1 2;3 4],’s’)
ans =

2
-2 -5bs + s

Polynomials can be added, subtracted, multiplied, and divided, as usual, but only between
polynomials of same formal variable.

CHAPTER 2. DATA TYPES 27

Polynomials, like real and complex constants, can be used as elements in matrices.
This is a very useful feature of Scilab for systems theory.

--> s=poly(0,’s’)
S =

-—> a=[1 s;s 1+s°2]
a —3

-—> b=[1/s 1/(1+s);1/(1+s) 1/s°2]

b =
! 1 1 !
| e]
! s 1+s !
1]
1 1 1]
| _ _— |
1 2]
! 1 +s s !

From the above examples it can be seen that matrices can be constructed from polynomials
and rationals.

2.5 Boolean Matrices

Boolean constants are %t and %f. They can be used in boolean matrices. The syntax is
the same as for ordinary matrices i.e. they can be concatenated, transposed, etc...
Operations symbols used with boolean matrices or used to create boolean matrices are
== and ~.
If B is a matrix of booleans or (B) and and (B) perform the logical or and and.

-—>%t
=

T

-->[1,2]==[1,3]
ans =

CHAPTER 2. DATA TYPES 28

' TF !

-—>[1,2]==1
ans =

' TF !

-—>a=1:5; a(a>2)
ans =

t 3. 4. 5. !

-=>B=[%t,%E,%t,%E, %t ,%t]
B =

' TFTFTT!

-—>A|B
ans =

' TFTFTT!

-->A&B
ans =

' TFTFFF!

Sparse boolean matrices are generated when, e.g., two constant sparse matrices are
compared. These matrices are handled as ordinary boolean matrices.

2.6 Lists, Linear Systems

Scilab has a list data type. The list is a collection of data objects not necessarily of the
same type. A list can contain any of the already discussed data types as well as other lists,
functions, and libraries. Lists are useful for defining structured data objects. For example,
in Scilab linear systems are treated as lists. The basic function which is used for defining
linear systems is syslin. This function receives as parameters the constant matrices which
define a linear system in state-space form or, in the case of system in transfer form its
input must be a rational matrix. To be more specific, the calling sequence of syslin is
either Sl=syslin(’dom’,A,B,C,D,x0) or Sl=syslin(’dom’,trmat). dom is one of the
character strings >c’ or ’d’ for continuous time or discrete time systems respectively. It
is useful to note that D can be a polynomial matrix (improper systems); D and x0 are
optional arguments. trmat is a rational matrix i.e. it is defined as a matrix of rationals
(ratios of polynomials). Conversion from a representation to another is done by ss2tf or
tf2ss. Improper systems are also treated.

CHAPTER 2. DATA TYPES

-->//list defining a linear system
-->A=[0 -1;1 -3];B=[0;1];C=[-1 0];

-->h=syslin(’c’,A,B,C)

h =
h(1) (state-space system:)
1ss
h(2) = A matrix =
! - 1.1
! 1 - 3. !
h(3) = B matrix =
10, !
T
h(4) = C matrix =
-1 0. !
h(5) = D matrix =
0.
h(6) = X0 (initial state) =
10, !
10, !
h(7) = Time domain =
c

-->//conversion from state-space form to transfer

-—>hs=ss2tf (h)

form

29

CHAPTER 2. DATA TYPES

-—>size(hs)
ans =

-—>hs (1)
ans =

-—>hs(2)
ans =

-->hs(3)
ans =

2
1 +3s + s

-—>hs(4)
ans =

-->typeof (hs)
ans =

rational
-->//inversion of transfer matrix

-—>inv(hs)
ans =

-->//inversion of state-space form

-—>inv(h)
ans =

CHAPTER 2. DATA TYPES 31

ans(1) (state-space system:)

1ss

ans(2) = A matrix =
(]

ans(3) = B matrix =
(]

ans(4) = C matrix =
(]

ans(5) = D matrix =

2

1+ 3s + s

ans (6)

X0 (initial state) =

(]

ans(7) Time domain =

-->//conversion of this inverse

-->ss2tf (ans)
ans =

1+ 3s + s

As can be seen by the above Scilab session the list h begins with the character string
>1ss’ which in this case indicates that the list represents a linear system. The five ensuing
list elements are matrices which give the state space description of the linear system and
its initial condition (& = Az + Bu, y = Cx + Du, xz(0) = zp). Finally, the last element
¢’ indicates that the list represents a continuous linear system

The list representation allows manipulating linear systems as abstract data objects.
For example, the linear system can be combined with other linear systems or the transfer
function representation of the linear system can be obtained as was done above using
ss2tf. Note that the transfer function representation of the linear system is itself a
list. The list consists of four elements: the first element is the character string ’r’

CHAPTER 2. DATA TYPES 32

S1 S9 —o slxs2
S1
PR ET}_,Q sl+s2
S2
S1
Q%w [s1,s2]
52

81 —>o

- [s1 ; s2]

82 ——>o

S1

s1/.s2

52

Figure 2.1: Inter-Connection of Linear Systems

which indicates that the list represents a rational polynomial matrix, the second and third
elements are the numerator and denominator polynomials, and finally, the fourth element
is the character string ’> ¢’ which indicates that the transfer function is that of a continuous
system. A very useful aspect of the manipulation of systems in Scilab is that a system can
be handled as a data object. Linear systems can be inter-connected, their representation
can easily be changed from state-space to transfer function and vice versa.

The inter-connection of linear systems can be made as illustrated in Figure 2.1. For
each of the possible inter-connections of two systems s1 and s2 the command which
makes the inter-connection is shown on the right side of the corresponding block diagram
in Figure 2.1. Note that feedback interconnection is performed by s1/.s2.

The representation of linear systems can be in state-space form or in transfer function
form. These two representations can be interchanged by using the functions tf2ss and
ss2tf which change the representations of systems from transfer function to state-space
and from state-space to transfer function, respectively. An example of the creation, the
change in representation, and the inter-connection of linear systems is demonstrated in
the following Scilab session.

-->//system connecting

-->s=poly(0,’s’)

CHAPTER 2. DATA TYPES

ft =

-=>ft=syslin(’c’,ft);
-—>gt=syslin(’c’,gt);

-->gls=tf2ss(gt);

-->ssprint(gls)
x=1l2Ilx+11]u
y=11Ix

-—>hls=gls*ft;

-->ssprint (hls)

. 2 1| | 0|
x=10 1lx+11|u
y=11 0 Ix

-—>ht=ss2tf (hls)
ht =

-->gt*ft

33

CHAPTER 2. DATA TYPES 34

The above session is a bit long but illustrates some very important aspects of the
handling of linear systems. First, two linear systems are created in transfer function form
using the primitive syslin. This primitive was used to label the systems in this example
as being continuous (as opposed to being discrete). The primitive tf2ss is used to convert
one of the two transfer functions to its equivalent state-space representation which is in list
form (note that the function ssprint creates a more readable format for the state-space
linear system). The following multiplication of the two systems yields their series inter-
connection. Notice that the inter-connection of the two systems is effected even though
one of the systems is in state-space form and the other is in transfer function form. The
resulting inter-connection is given in state-space form. Finally, the primitive ss2tf is
used to convert the resulting inter-connected systems to the equivalent transfer function
representation.

2.7 Functions (Macros)

Functions (also called macros) are a very useful aspect of Scilab. Functions are collections
of commands which are executed in a new environment thus isolating function variables
from the original environments variables. Functions can be created and executed in a
number of different ways. Furthermore, functions can pass arguments, have programming
features such as conditionals and loops, and can be recursively called. Functions can be
arguments to other functions and can be elements in lists. The most useful way of creating
functions is by using a text editor, however, functions can be created directly in the Scilab
environment using the deff primitive.

-=> deff (’ [x]=foo(y)’,’if y>0 then, x=1; else, x=-1; end’)

--> foo(5)
ans =

--> foo(-3)
ans =

- 1.

Usually functions are defined in a file using an editor and loaded into Scilab with getf (’filename’)
or getf (’filename’,’c’). This can be done also by clicking in the File operation but-

ton. This latter syntax loads the function(s) in filename and compiles them. The first

line of filename must be as follows:

CHAPTER 2. DATA TYPES 35

function [y1,...,yn]l=macname(xl,...,xk)

where the yi’s are output variables and the xi’s the input variables.
For more on the use and creation of functions see Section 3.2.

2.8 Libraries

Libraries are collections of functions which can be either automatically loaded into the
Scilab environment when Scilab is called, or loaded when desired by the user. Libraries
are created by the 1ib command. Examples of librairies are given in the SCIDIR/macros
directory. Note that in these directory there is an ASCII file “names” which contains the
names of each function of the library, a set of .sci files which contains the source code
of the functions and a set of .bin files which contains the compiled code of the functions.
The Makefile invokes scilab for compiling the functions and generating the .bin files.
The compiled functions of a library are automatically loaded into Scilab at their first call.

2.9 Objects

We conclude this chapter by noting that the function typeof returns the type of the
various Scilab objects. The following objects are defined:

e usual for matrices with real or complex entries.

e polynomial for polynomial matrices: coefficients can be real or complex.
e boolean for boolean matrices.

e character for matrices of character strings.

e uncompiled function for un-compiled functions.

e function for compiled functionds.

e rational for rational matrices (or linear systems in transfer matrix representation
(syslin lists)

e state-space for linear systems in state-space form (syslin lists).
e sparse for sparse matrices.
e list for ordinary lists i.e. lists which do not represent linear systems (syslin lists).

e library for library definition.

Chapter 3

Programming

One of the most useful features of Scilab is its ability to create and use functions. This
allows the development of specialized programs which can be integrated into the Scilab
package in a simple and modular way through, for example, the use of libraries. In this
chapter we treat the following subjects:

e Programming Tools

e Defining and Using Functions

e Definition of Operators for New Data Types
e Debbuging

Creation of libraries is discussed in a later chapter.

3.1 Programming Tools

Scilab supports a full list of programming tools including loops, conditionals, case selection,
and creation of new environments. Most programming tasks should be accomplished in
the environment of a function. Here we explain what programming tools are available.

3.1.1 Comparison Operators

There exist five methods for making comparisons between the values of data objects in
Scilab. These comparisons are listed in the following table.

== or= equal to
< smaller than
> greater than
<= smaller or equal to
>= greater or equal to
<> or "= not equal to

These comparison operators are used for evaluation of conditionals.

36

CHAPTER 3. PROGRAMMING 37
3.1.2 Loops
Two types of loops exist in Scilab: the for loop and the while loop. The for loop steps

through a vector of indices performing each time the commands delimited by end.

--> x=1;for k=1:4,x=x*k,end

X =
1.

X =
2.

X =
6.

b4 =
24.

The for loop can iterate on any vector or matrix taking for values the elements of the
vector or the columns of the matrix.

--> x=1;for k=[-1 3 0],x=x+k,end

X =
0.

X =
3.

X =
3.

The for loop can also iterate on lists. The syntax is the same as for matrices.
The while loop repeatedly performs a sequence of commands until a condition is
satisfied.

-=> x=1; while x<14,x=2%x,end

X =
2.

X =
4.

X =
8.

CHAPTER 3. PROGRAMMING 38

16.

A for or while loop can be ended by the command break :

-->a=0;for i=1:5:100,a=a+1;if i > 10 then break,end; end

-->a
a =

3.1.3 Conditionals

Two types of conditionals exist in Scilab: the if-then-else conditional and the select-
case conditional. The if-then-else conditional evaluates an expression and if true exe-
cutes the instructions between the then statement and the else statement (or end state-
ment). If false the statements between the else and the end statement are executed.
The else is not required. The elseif has the usual meaning and is a also a keyword
recognized by the interpreter.

-=> x=1

--> if x>0 then,y=-x,else,y=x,end

y =
- 1.

-—=> x=-1

x =
- 1.

--> if x>0 then,y=-x,else,y=x,end
y =
- 1.

The select-case conditional compares an expression to several possible expressions
and performs the instructions following the first case which equals the initial expression.

--> x=-1
X =

CHAPTER 3. PROGRAMMING 39

--> select x,case 1,y=x+5,case -1,y=sqrt(x),end
y —3

i

It is possible to include an else statement for the condition where none of the cases are
satisfied.

3.2 Defining and Using Functions

It is possible to define a function directly in the Scilab environment, however, the most
convenient way is to create a file containing the function with a text editor. In this section
we describe the structure of a function and several Scilab commands which are used almost
exclusively in a function environment.

3.2.1 Function Structure

Function structure must obey the following format

function [y1,...,ynl=foo(xl,...,xm)

where foo is the function name, the xi are the m input arguments of the function, the yj
are the n output arguments from the function, and the three vertical dots represent the
list of instructions performed by the function. An example of a function which calculates
k! is as follows

function [x]=fact (k)
k=int (k) ;
if k<1 then,
k=1;
end,
x=1;
for j=1:k,
X=X*]j;
end,

If this function is contained in a file called fact.sci the function is “loaded” into the
Scilab environment and is used as follows.

-—> exists(’fact’)
ans =

--> getf(’../macros/fact.sci’)

CHAPTER 3. PROGRAMMING 40

--> exists(’fact’)
ans =

--> x=fact(5)
X -

120.

--> comp(fact)

In the above Scilab session, the command exists indicates that fact is not in the environ-
ment (by the 0 answer to exist). The function is loaded into the environment using getf
and now exists indicates that the function is there (the 1 answer). The example calculates
5!. Finally, the function is compiled using comp for faster execution. Note that compiling
fact can be realized directly by the command getf (’../macros/fact.sci’,’c?).

3.2.2 Loading Functions

Functions are usually defined in files. A file which contains a function must obey the
following format

function [y1,...,yn]l=foo(xl,...,xm)

where foo is the function name. The xi’s are the input parameters and the the yj’s are
the output parameters, and the three vertical dots represent the list of instructions perfor-
med by the function. Inputs and ouputs parameters can be any Scilab object (including
functions themeselves).

Functions are Scilab objects and should not be considered as files. To be used in Scilab,
functions defined in files must be loaded by the command getf (filename, ’c’). If the file
filename contains the function foo, the function foo can be executed only if it has been
previously loaded by the command getf (filename,’c’) (where ’c’ is optional). A file
may contain several functions. Functions can also be defined “on line” by the command
deff. This is useful if one wants to define a function as the output parameter of a other
function.

Collections of functions can be organized as libraries (see 1ib command). Stan-
dard Scilab librairies (linear algebra, control,...) are defined in the subdirectories of
SCIDIR/macros/.

3.2.3 Global and Local Variables

If a variable in a function is not defined (and is not among the input parameters) then
it takes the value of a variable having the same name in the calling environment. This
variable however remains local in the sense that modifying it within the function does not
alter the variable in the calling environment unless resume is used (see below). Functions
can be invoked with less input or output parameters. Here is an example:

CHAPTER 3. PROGRAMMING

function [y1,y2]=f(x1,x2)
yl=x1+x2
y2=x1-x2

-—>[y1l,y2]=£(1,1)
y2 =
0.

yli =
2.

-—>f(1,1)
ans =
2.

-—>f (1)
y1=x1+x2;
l-—error 4
undefined variable : x2
at line 2 of function f

-->x2=1;

-->[y1,y2]=£ (1)

y2
0.

yl =
2.

-—>f (1)
ans =

41

Note that it is not possible to call a function if one of the parameter of the calling

sequence is not defined:

function [y]=f(x1,x2)

if x1<0 then y=x1, else y=x2;end

-—>f(-1)
ans =

-—>f(-1,x2)

CHAPTER 3. PROGRAMMING 42

|-—error 4
undefined variable : x2

-=>f(1)

undefined variable : x2

at line 2 of function f called by :
(1)

-->x2=3;f(1)

-—>f (1)
ans =

3.2.4 Special Function Commands

Scilab has several special commands which are used almost exclusively in functions. These
are the commands

e argn: returns the number of input and output arguments for the function

e error: used to suspend the operation of a function, to print an error message, and
to return to the previous level of environment when an error is detected.

e warning,
e pause: temporarily suspends the operation of a function.
e break: forces the end of a loop

e return or resume : used to return to the calling environment and to pass local
variables from the function environment to the calling environment.

The following example loads a function called foo into Scilab which illustrates these
commands.

-—>getf(’../macros/foo.sci’)

-->foo
foo =

[z]l=foo(x,y)

--> z=f00(0,1)
error(’division by zero’);
I-—error 10000
division by zero
at line 4 of function foo called by :

CHAPTER 3. PROGRAMMING 43

z=fo0(0,1)

--> z=fo0(2,1)

-1-> resume

z =
0.7071068
--> s
s =
0.5

In the example we load foo.sci and display the contents of the function. The first call
to foo passes an argument which cannot be used in the calculation of the function. The
function discontinues operation and indicates the nature of the error to the user. The
second call to the function suspends operation after the calculation of slope. Here the
user can examine values calculated inside of the function, perform plots, and, in fact
perform any operations allowed in Scilab. The -1-> prompt indicates that the current
environment created by the pause command is the environment of the function and not
that of the calling environment. Control is returned to the function by the command
return. Operation of the function can be stopped by the command quit or abort.
Finally the function terminates its calculation returning the value of z. Also available
in the environment is the variable s which is a local variable from the function which is
passed to the global environment.

3.3 Definition of Operations on New Data Types

It is possible to transparently define fundamental operations for new data types in Scilab.
That is, the user can give a sense to multiplication, division, addition, etc. on any two data
types which exist in Scilab. As an example, two linear systems (represented by lists) can
be added together to represent their parallel inter-connection or can be multiplied together
to represent their series inter-connection. Scilab performs these user defined operations
by searching for functions (written by the user) which follow a special naming convention
described below.

The naming convention Scilab uses to recognize operators defined by the user is deter-
mined by the following conventions. The name of the user defined function is composed
of four (or possibly three) fields. The first field is always the symbol %. The third field is
one of the characters in the following table which represents the type of operation to be
performed between the two data types.

CHAPTER 3. PROGRAMMING 44

‘ Third field ‘
| SYMBOL | OPERATION |
a +
b ; (row separator)
c [] (matrix definition)
d i
e () extraction: m=a(k)
i () insertion: a(k)=m
k Lk,
1 \ left division
m *
P = exponent
q A
r / right division
S -
t > (transpose)
u * .
v /.
W \.
X Lk
y .
z A

The second and fourth fields represent the type of the first and second data objects,
respectively, to be treated by the function and are represented by the symbols given in
the following table.

‘ Second and Fourth fields ‘
| SYMBOL | VARIABLE TYPE |

S scalar

P polynomial

1 list (untyped)
c character string
m function
XXX list (typed)

A typed list is one in which the first entry of the list is a character string where the first
three characters of the string are represented by the xxx in the above table. For example
a list representing a linear system has the form 1ist(’1ss’,a,b,c,d,x0,’c’) and, thus,
the xxx above is 1ss.

An example of the function name which multiplies two linear systems together (to
represent their series inter-connection) is %1lssmlss. Here the first field is %, the second
field is 1ss (linear state-space), the third field is m “multiply” and the fourth one is 1ss.
A possible user function which performs this multiplication is as follows

function [s]=Ylssmlss(s1,s2)
[A1,B1,C1,D1,x1,doml1]=s1(2:7),
[A2,B2,C2,D2,x2]=s2(2:6),

CHAPTER 3. PROGRAMMING 45

B1C2=B1%C2,
s=list(’1lss’, [A1,B1C2;0%B1C2’ ,A2],...
[B1xD2;B2], [C1,D1%C2] ,D1%D2, [x1;x2] ,doml),

An example of the use of this function after having loaded it into Scilab (using for example
getf or inserting it in a library) is illustrated in the following Scilab session

-—>A1=[1 2;3 4];B1=[1;1];C1=[0 1;1 0];
-—>A2=[1 -1;0 1];B2=[1 0;2 1];C2=[1 1]1;D2=[1,1];
-->s1=syslin(’c’,A1,B1,C1);

-->s2=syslin(’c’,A2,B2,C2,D2);

-->ssprint(sl)

1 2| | 11
x=13 4 lx+1]|1|u

[0 1]
y=11 0 Ix
-->ssprint (s2)

[1 -1 | | 1 0 |
x=10 1lx+]2 1 |u
y=11 11lx+ 11 1lu
-->s12=s1%*s2; //This is equivalent to s12=Ylssmlss(sl,s2)
-->ssprint(s12)

[1 2 1 1| | 1 1 |

|3 4 1 1| 1 1|
x=]10 0 1-11]x+]1 0 lu

lo 0 0 1| |l 2 1|

| 0 1 0 0|
y=11 0 0 0 [x

Notice that the use of %1ssmss is totally transparent in that the multiplication of the two
lists s1 and s2 is performed using the usual multiplication operator *.

The directory SCIDIR/macros/percent contains all the functions (a very large num-
ber...) which perform operations on linear systems and transfer matrices. Conversions are
automatically performed. For example the code for the function %1lssmlss is there (note
that it is much more complicated that the code given here!).

CHAPTER 3. PROGRAMMING 46

3.4 Debbuging

The simplest way to debug a Scilab function is to introduce a pause command in the
function. When executed the function stops at this point and prompts -1-> which indi-
cates a different “level”; another pause gives -2-> ... At the level 1 the Scilab commands
are analog to a different session but the user can display all the current variables present
in Scilab, which are inside or outside the function i.e. local in the function or belonging
to the calling environment. The execution of the function is resumed by the command
return or resume (the variables used at the upper level are cleaned). The execution of
the function can be interrupted by abort.

It is also possible to insert breakpoints in functions. See the commands setbpt,
delbpt, disbpt. Finally, note that it is also possible to trap errors during the execu-
tion of a function: see the commands errclear and errcatch. Finally the experts in
Scilab can use the function debug(i) where i=0,..,4 denotes a debugging level.

Chapter 4

Basic Primitives

This chapter briefly describes some basic primitives of Scilab. More detailed information
is given in the manual (see the directory SCIDIR/man/LaTex-doc).

4.1 The Environment and Input/Output

In this chapter we describe the most important aspects of the environment of Scilab: how
to automatically perform certain operations when entering Scilab, and how to read and
write data from and to the Scilab environment.

4.1.1 The Environment

Scilab is loaded with a number of variables and primitives. The command who lists the
variables which are available.

The who command also indicates how many elements and variables are available for
use. The user can obtain on-line help on any of the functions listed by typing help
<function-name>.

Variables can be saved in an external binary file using save. Similarly, variables
previously saved can be reloaded into Scilab using load.

Note that after the command clear x y the variables x and y no longer exist in the
environment. The command save without any variable arguments saves the entire Scilab
environment. Similarly, the command clear used without any arguments clears all of the
variables, functions, and libraries in the environment.

Functions which exist in files can be seen by using disp and loaded by using getf.

Libraries of functions are loaded using 1ib.

The list of functions available in the library can be obtained by using disp.

4.1.2 Startup Commands by the User

When Scilab is called the user can automatically load into the environment functions, li-
braries, variables, and perform commands using the the file . scilab in his home directory.
This is particularly useful when the user wants to run Scilab programs in the background
(such as in batch mode). Another useful aspect of the .scilab file is when some functions
or libraries are often used. In this case the command getf can be used in the .scilab
file to automatically load the desired functions and libraries whenever Scilab is invoked.

47

CHAPTER 4. BASIC PRIMITIVES 48

4.1.3 Input and Output

Although the commands save and load are convenient, one has much more control over
the transfer of data between files and Scilab by using the commands read and write.
These two commands work similarly to the read and write commands found in Fortran.
The syntax of these two commands is as follows.

-=> x=[1 2 Ypi;%e 3 4]

bd =

! 1. 2. 3.1415927 !
! 2.7182818 3. 4. !

--> write(’x.dat’,x)
--> clear x

--> xnew=read(’x.dat’,2,3)

xnew =
! 1. 2. 3.1415927 !
! 2.7182818 3. 4. !

Notice that read specifies the number of rows and columns of the matrix x. Complicated
formats can be specified.

4.2 Help

On-line help is available either by clicking on the help button or by entering help item
(where item is usually the name of a function or primitive). The help facility is based on
the Unix xman command. apropos item looks for item in the whatis file. This facility
is equivalent to the Unix whatis command. To add a new item in the manual is easy:
just look at the SCIDIR/man subdirectories. The Scilab INTpX manual is automatically
obtained from the manual items by a Makefile. See the directory SCIDIR/man/Latex-doc.
Note that the command manedit opens an help file with an editor (default editor is emacs).

4.3 Nonlinear Calculation

Scilab has several powerful non-linear primitives for simulation or optimization.

4.3.1 Externals

An “external” is a function or Fortran routine which is used as an argument of some high-
level primitives (such as ode, optim...). The calling sequence of the external (function or
routine) is imposed by the high-level primitive which sets the arguments of the external.
For example the external function costfunc is an argument of the optim primitive. Its cal-
ling sequence must be: [f,g,ind]=costfunc(x,ind) as imposed by the optim primitive.
The following non-linear primitives in Scilab need externals: ode, optim, impl, dassl,

CHAPTER 4. BASIC PRIMITIVES 49

intg, fsolve. For problems where computation time is important, it is recommended
to code the externals as Fortran subroutines. Examples of such subroutines are given in
the directory SCIDIR/routines/default. When such a subroutine is written it must be
linked to Scilab. This link operation can be “dynamic” (see link). It is also possible to
introduce the code in a more permanent manner by inserting it in a specific interface (see
e.g. fydot.f in SCIDIR/routines/default and rebuild a new Scilab by a make.

4.3.2 Nonlinear Primitives

The main simulation primitives in Scilab allow integrating a broad range of non-linear
system functions of both explicit and implicit nature. It is also possible to integrate a
system of differential equations with a stopping time: integration is performed until the
trajectory reaches a given surface. In the following we illustrate the basic ode syntax for
example.

The example illustrates the basic usage of ode. Here we simulate the motion of a double
pendulum. Let #; and 65 be the angles that the first and second pendulum elements make
with the vertical and ry, ro, m; and mo be the lengths and masses of the respective
pendulum elements. The non-linear differential equation which describes the motion of
the pendulum is:

mry maTe cOS O 651 _ —mgrgég sin @ _ m sin 64 (4.1)
0y | r16% sin 0 g '

71 Ccos 01 79 sin 6o

where ¢ is the acceleration due to gravity, m = mq 4+ msg, and 6 = 61 + 65. The following
Scilab session simulates the movement of the pendulum for 1.5 seconds where g = 9.8m/s,
r1 =19 = Im, and m1 = m2 = 1lkg. The initial conditions are 61 = 7/2, 05 = 7/2, 6, =0,
and 92 =0.

--> ml=1;m2=1;r1=1;r2=1;

--> g=9.8;

-=> t0=0;

--> t=0:.1:1.5;

--> z0=[%pi/2;%pi/2;0;0];

--> getf(’../macros/dpend.sci’,’c’);
--> z=0de(z0,t0,t,dpend) ;

-—> pp(2)

The result of the above session is plotted in Figure ?7?7. Note that ode takes four argu-
ments: an initial condition vector z0, the initial time t0, a vector of times t for which the
integrated values z are desired, and the function dpend which exists in the environment of
Scilab and which calculates the value of the derivative zd given the time t and the value
of z at this time.

CHAPTER 4. BASIC PRIMITIVES 50

xinit(’d6-1.ps’); m1=1;m2=1;r1=1;r2=1; g=9.8; t0=0; t=0:.1:1.5; z0=[getf(’../macros/dpend.sci’);
comp(dpend); comp(pp); z=ode(z0,t0,t,dpend); pp(z) Simulation of a Double Pendul-
umf6.1

Note that the dpend function calculates the derivative of the state of the double pen-
dulum following (4.1).

function [zdot]=dpend(time,z)
thl=z(1) ;th2=z(2) ;th1d=z(3) ;th2d=z(4) ;
s812=sin(th1-th2) ;c12=cos(th1-th2);
mi12=mi1+m2;sl1=sin(thl) ;s2=sin(th2);
mat=[m12*rl1 m2*r2*cl2;...

rixcl12 r2];
vec=-[m12*g*s1+m2*r2+th2d*th2d*s12;. ..
g*s2-rixthld*thld*s12];

res=mat\vec;
thldd=res (1) ;th2dd=res(2);
zdot=[thld;th2d;th1dd;th2dd] ;

function []=pp(z)

thi=z(1,:);th2=2(2,:);

rcl=rilx*cos(thl) ;rc2=r2*cos(th2);

rsl=ri*sin(thl) ;rs2=r2*sin(th2);

rsl2=rsl+rs2;rcl2=rcl+rc2;

rect=[-2.1,-3.1,2.1,1.1];

for k=1:maxi(size(thl));

plot2d ([0 rsi(k) rs12(k)]’,-[0 rci(k) rci2(k)]’,...

[-1],"011",’ ’,rect,[10,3,10,3]);

end,

The Scilab “external” function which calculates the derivative (dpend in this example)
must have a certain format. This format is as follows

function [xdot]=f(time,x)

The format specifies that the argument list contain two variables. The first variable time
is a scalar which represents time, the second variable x is a vector (or matrix) of the state
values. The returned value xdot is the calculated derivative and has the same dimensions
as x. For differential equations of order greater than one state augmentation is used.

The optimization primitive optim in Scilab is capable finding locally optimum solutions
to a wide range of non-linear problems. In the following we illustrate the basic optim
syntax by example.

The example used to illustrate the use of optim is the classic ray-tracing problem of
a plane wave travelling from one material to another. Here we pose the problem slightly
differently. Imagine a lifeguard on a beach and a person calling for help in the water.
The lifeguard’s speed on land is different from his speed in water and, consequently, he
would like to choose the point along the border between beach and water which minimizes

CHAPTER 4. BASIC PRIMITIVES o1

the travel time to the calling person. This problem can be analytically solved when the
border between beach and water is a straight line. The problem may not be analytically
resolvable when the function of the border is more complicated than a straight line.

The problem is posed as follows. Given that the lifeguard is at the origin of a Cartesian
coordinate system, that the person to be saved is at the coordinates (z,y), and that
the border between the beach and the water can be described by the function d(z), the
lifeguard’s time of travel is

T(p) < VI EW) V(z—p)*+ (y—dp)’ (4.9)

(%) Vw

where p is the z-axis coordinate of the point along the border through which the lifeguard
passes and where v; and v,, are the respective speeds of the lifeguard on the beach and in
the water. Here we assume that the x coordinate given by p uniquely defines a point on
the border between the beach and the water.

We know that a locally optimum solution must make d7'(p)/dt = 0 and we can calculate
the derivative of T" as a function of the derivative of d

gT(p): p+dd, (p—2)+(d-y)dy
vs VP2 + a2 v/ (z —p)? + (y — d)?

dt
where d,, is the partial of d with respect to p. The following Scilab functions make the
calculations in (4.2) and (4.3).

(4.3)

function [t,t_p,ind]=swim(p,ind)
[d,d_pl=dpfun(p);
as=sqrt(d~2+p~2);
aw=sqrt ((x-p) "2+(y-d) ~2);
t=as/vs+aw/vw;
t_p=(p+d*d_p)/ (vs*as)+((p-x)+(d-y)*d_p)/ (vw*aw) ;

function [d,d_pl=dpfun(p);
d=1.75-exp(log(1.55)*p);
d_p=-log(1.55)*exp(log(1.55)*p);

where the functions d and d,, are calculated by the function dpfun. These two functions
are used in the following Scilab session by the primitive optim to find the optimum point

p.

-=> x=1;y=1;vs=5;vw=1;
--> getf(’../macros/swim.sci’);
--> getf(’../macros/plotopt.sci’);

--> [ts,ps,tps]l=optim(swim,0)
end of optimization

tps =

CHAPTER 4. BASIC PRIMITIVES 52

4.580D-16
ps =

0.6144065
ts =

0.8303513

-=> popt(ps);

Here it can be seen that the primitive optim takes two arguments and returns three values.
The first argument is the name of the Scilab function which calculates the value of time
(the cost) and the derivative of the time with respect to the value of p. The second
argument is a first guess for the value of p. The returned values are, respectively, the
optimal cost ts associated to the value of p which is the value in ps, and, finally, the value
of the gradient at this point which is in tps.

The optimal path for the lifeguard is illustrated in Figure ??7. The curved line repres-
ents the shape of the shoreline and the dotted line represents the lifeguard’s optimal path.
xinit(’d6-2.ps’); x=1;y=1;vs=5;vw=1; getf(’../macros/swim.sci’); getf(’../macros/plotopt.sci’);
[ts,ps,tps]=optim (swim,0) popt(ps); Optimal Lifeguard Pathf6.2

4.4 Fortran or C Interface

Scilab can be easily interfaced with Fortran or C subroutines. The simplest way is using
the dynamic link primitive 1ink and the subroutine call primitive fort. Details are given
in the Scilab manual.

Fortran subprograms can also be linked to Scilab by using an external Fortran program
call interf. See the program interf.f in the directory SCIDIR/default where examples
are given.

These facilities are particularly useful for simulation and optimization of non-linear
problems or for introducing programs automatically generated by the computer algebra
system Maple. There are two steps for interfacing dynamically a subroutine written in
Fortran with Scilab. These two steps are demonstrated in what follows.

To link a fortran subroutine with Scilab it is first necessary to have a file which contains
the executable object file of the subroutine. We introduce the Fortran subroutine fibb
which calculates the n** Fibbonacci number f,, (i.e. the sequence 0,1,1,2,3,5,8,... where

fn - fn—l + fn—2)-

subroutine fibb(fn,n)

n0=0

nil=1

if(n.ge.3)then

do 10 k=1,n-2
fn=n0+n1i
n0=nl
nl=fn

10 continue
else

CHAPTER 4. BASIC PRIMITIVES 53

fn=n-1
endif
end

Assuming that the object file for fibb is available in the file fibb.o the following Scilab
session shows how to use the subroutine from Scilab.

-—>unix("make fibb.o");
-—>1ink(’fibb.o’,’fibb?’)

-=>1ink ()
ans =

fibb

-->n=6
n —3

-—>fn=fort(’fibb’,n,2,’i’,’out’,[1,1],1,’r’)
fn =

5.

The primitive 1link usually takes two arguments where the first argument is the name of
the object file and the second argument is the name of the subroutine call. Note that the
primitive c_link may be used to know all the previously linked subroutines. The use of
fort to call the subroutine £ibb is a bit complicated. The arguments are divided into four
groups. The first argument ’fibb’ is the name of the called subroutine. The argument
>out’ divides the remaining arguments into two groups. The group of arguments between
>fibb’ and ’out’ is the list of input arguments, their positions in the call to £ibb, and
their data type. The group of arguments to the right of >out’ are the dimensions of the
output variables, their positions in the call to £ibb, and their data type. The possible data
types are real, integer, and double precision which are indicated, respectively, by the strings
’r’, ’1i’, and ’d’. The positions of the two arguments for £ibb are n at position 2 and
fn at positon 1 which explains the above call values. The vector [1,1] indicates that the
output fn is a 1 x 1 matrix. The routines which are linked to Scilab can also access internal
Scilab variables (see the routine matz.f in the directory SCIDIR/routines/system2).

4.5 XWindow Dialog

It may be convenient to open a specific XWindow window for entering interactively pa-
rameters inside a function or for a demo. This facility is possible thanks to e.g. the
functions x_dialog, x_choose, x_mdialog, x_matrix and x_message. The demos which
can be executed by clicking on the demo button provide simple examples of the use of
these functions.

CHAPTER 4. BASIC PRIMITIVES 54

FF

UP

U -° Model Reg + Proc Y

Sensor

Figure 4.1: Inter-Connected Systems

4.6 Maple Interface

The Maple procedure maple2scilab allows to numerically evaluate any Maple expression
in Scilab. On input this procedure takes a Maple matrix made of symbolic expressions.
When maple2scilab is invoked in Maple, a Fortran program is automatically generated by
Maple (via Macrofort package in Maple) together with a Scilab function which allows to
(dynamically) call this subroutine. The parameters of the function are the Maple symbols
and thus the Maple matrix can be evaluated numerically in Scilab. The use of Fortran is
for speed purposes since the formal Maple expression can be extremely complicated.

4.7 System Interconnection

The purpose of this section is to illustrate some of the more sophisticated aspects of Scilab
by the way of an example. The example shows how Scilab can be used to symbolically
represent the inter-connection of multiple systems which in turn can then be used to
numerically evaluate the performance of the inter-connected systems. The symbolic re-
presentation of the inter-connected systems is done with a function called bloc2exp and
the evaluation of the resulting system is done with evstr.

The example illustrates the symbolic inter-connection of the systems shown in Fi-
gure 4.1. Figure 4.1 illustrates the classic regulator problem where the block labeled Proc
is to be controlled using feedback from the Sensor block and Reg block. The Reg block
compares the output from the Model block to the output from the Sensor block to decide
how to regulate the Proc block. There is also a feed-forward block which filters the input
signal U to the Proc block. The outputs of the system are Y and UP.

The system illustrated in Figure 4.1 can be represented in Scilab by using the function
bloc2exp. The use of bloc2exp is illustrated in the following Scilab session. There a
two kinds of objects: “transfer” and “links”. The example considered here admits 5
transfers and 7 links. First the transfer are defined in a symbolic manner. Then links

CHAPTER 4. BASIC PRIMITIVES 55

are defined and an “interconnected system” is defined as a specific list. The function
bloc2exp evaluates symbolically the global transfer and evstr evaluates numerically the
global transfer function once the systems are given “values”, i.e. are defined as Scilab
linear systems.

-->model=2;reg=3;proc=4;sensor=5;ff=6; somm=7;
-—>tm=list(’transfer’,’model’);

-—>tr=1ist(’transfer’, [’reg(:,1)’,’reg(:,2)°]);
-->tp=list(’transfer’,’proc’);
-—>ts=list(’transfer’,’sensor’);
-—>tf=list(’transfer’,’ff’);

-—>tsum=1list (’transfer’,[’1°,°1°]);

-->lum=1ist (’link’,’input’, [-1], [model, 1], [ff,1]);
-->Imr=1ist(’link’, model output’, [model,1], [reg,1]);
-->1rs=1ist(’link’, ’regulator output’, [reg,1], [somm,1]);
-->1fs=1ist(’1link’,’feed-forward output’, [ff,1], [somm,1]);
-->1sp=list(’link’,’proc input’, [somm,1], [proc,1],[-2]);
-=>1py=list(’link’,’proc output’, [proc,1], [sensor,1],[-1]);
-->1sup=list(’link’,’sensor output’, [sensor,1], [reg,2]);

—-—>syst=...
list(’blocd’,tm,tr,tp,ts,tf,tsum,lum,lmr,lrs,1fs,1lsp,lpy, lsup);

—-->[sysf,names]=bloc2exp(syst)
names =

names>1
input

names>2

'proc output !
! !

CHAPTER 4. BASIC PRIMITIVES 56

!proc input !
sysf =

Iproc*((eye-reg(:,2)*sensor*proc)\(-(-ff-reg(:,1)*model))) !
! !

! (eye-reg(:,2)*sensor*proc)\(-(-ff-reg(:,1)*model)) !

Note that the argument to bloc2exp is a list of lists. The first element of the list syst
is (actually) the character string *blocd’ which indicates that the list represents a block-
diagram inter-connection of systems. Each list entry in the list syst represents a block
or an inter-connection in Figure 4.1. The form of a list which represents a block begins
with a character string ’transfer’ followed by a matrix of character strings which gives
the symbolic name of the block. If the block is multi-input multi-output the matrix of
character strings must be represented as is illustrated by the block Reg.

The inter-connections between blocks is also represented by lists. The first element of
the list is the character string >1ink’. The second element of the inter-connection is its
symbolic name. The third element of the inter-connection is the input to the connection.
The remaining elements are all the outputs of the connection. Each input and output to
an inter-connection is a vector which contains as its first element the block number (for
instance the model block is assigned the number 2). The second element of the vector
is the port number for the block (for the case of multi-input multi-output blocks). If an
inter-connection is not attached to anything the value of the block number is negative (as
for example the inter-connection labeled ’input’ or is omitted.

The result of the bloc2exp function is a list of names which give the unassigned inputs
and outputs of the system and the symbolic transfer function of the system given by sysf
The symbolic names in sysf can be associated to polynomials and evaluated using the
function evstr. This is illustrated in the following Scilab session.

-->s=poly(0,’s’);
-->ff=1;sensor=1;model=1;
-->proc=s/(s"2+3%s+2) ;
-—>reg=[1/s 1/s];

-->sys=evstr(sysf)
sys =

CHAPTER 4. BASIC PRIMITIVES 57
! s + 3s + s !

The resulting polynomial transfer function links the input of the block system to the two
outputs. Note that the output of evstr is the rational polynomial matrix sys whereas
the output of bloc2exp is a matrix of character strings.

The symbolic evaluation which is given here is not very efficient with large interconnec-
ted systems. The function bloc2ss performs the previous calculation in state-space for-
mat. Each system is given now in state-space as a syslin list or simply as a gain (constant
matrix). Note bloc2ss performs the necessary conversions if this is not done by the user.
Each system must be given a value before bloc2ss is called. All the calculations are made
in state-space representation even if the linear systems are given in transfer form.

4.8 Converting Scilab Functions to Fortran Routines

Scilab provides a compiler (under development) to transform some Scilab functions into
Fortran subroutines. The routines which are thus obtained make use of the routines which
are in the Fortran libraries. All the basic matrix operations are available.

Let us consider the following Scilab function:

function [x]=macr(a,b,n)

z=n+m+n,

c(1,1)==,
c(2,1)=z+1,
c(1,2)=2,
c(2,2)=0,

if n=1 then,
x=a+b+a,

else,

x=a+b-a’+b,

end,
y=a(3,z+1)-x(z,5),
x=2%x*x*2.21,
sel=1:5,

t=axb,

for k=1:n,
zl=z*a(k+1,k)+3,
end,
t(sel,5)=a(2:4,7),
x=[a b;-b’ a’]

which can be translated into Fortran by using the function mac2for. Each input para-
meter of the subroutine is described by a list which contains its type and its dimensions.
Here, we have three input variables a,b,c which are, say, integer, double precision,
double precision with dimensions (m,m), (m,m), (1,1). This information is gathered
in the following list:

1=1ist();

CHAPTER 4. BASIC PRIMITIVES

1(1)=1ist(’1’,’m’,’m’);
1(2)=1list(’1’,’m’,’m’);
1(3)=1ist(’0’,%17,71°);

The call to mac2for is made as follows:

comp (macr) ;
mac2for (macr2lst(macr),1)

The output of this command is a string containing a stand-alone Fortran subroutine.

subroutine macr(a,b,n,x,m,work,iwork)
c!
¢ automatic translation

double precision a(m,m),b(m,m),x(m+m,m+m),y,z1,24(m,m) ,work(*)
integer n,m,z,c(2,2),sel(5) ,k,iwork(*)

call dmcopy(b,m,x(1,m+1) ,m+m,m,m)

call dmcopy(work(iwl) ,m,x(m+1,1) ,m+m,m,m)
call dmcopy(work(iwl) ,m,x(m+1,m+1) ,m+m,m,m)
return

end

This routine can be linked to Scilab and interactively called.

58

Chapter 5

Graphics

This section introduces graphics in Scilab.

5.1 The Graphics Window

On the right side of the Delete button, a checker give the number wn of the graphics
window. This number is given at the end of the title of the window, e.g. ScilabGraphicl.
The button Raise (Create) Window raises the window wn if it exists and creates it if not.
The button Set (Create) Window activates the window wn if it exists and simultaneously
creates it if necessary. The Delete button closes the window wn if it exists. The execution
of a plotting command automatically creates a window if necessary.

There are 4 buttons on the graphics window:

e 3D Rot.: for applying a rotation with the mouse to a 3D plot. This button is
inhibited for a 2D plot.

e 2D Zoom: zooming on a 2D plot. This command can be recursively invoked. This
button has no for a 3D plot.

e UnZoomx: return to the initial plot (not to the plot corresponding to the previous
zoom in case of multiple zooms).

e File: this button opens different commands and menus.
The first one is simple : Clear simply rubs out the plot of the window.

The next command Print... opens a selection panel for getting a paper output of
the plot.

The Export command opens a panel selection for getting a copy of the plot on a file
with a specified format (Postscript, Latex).

The save command directly saves the plot on a file with a specified name. This file
can be loaded later in Scilab for replotting.

The Delete is the same command (close) than the previous one but simply applied
to its window.

59

CHAPTER 5. GRAPHICS 60

5.2

The Media

There are different graphics devices in Scilab which can be used to send graphics to
windows or paper. The default is ScilabGraphicO window .
The basic Scilab graphics commands are :

driver: selects a graphic driver

xinit: initializes a graphic driver

xclear: clears one or more graphic windows
xpause: a pause in milliseconds

xselect: raises the current graphic window
xclick: waits for a mouse click

xend: closes a graphic session

The different devices are:

X11 : graphics device for the X11 window system

Rec : an X Window driver (X11) which also records all the graphic commands. This
is the default

Wdp : an X11 driver without recorded graphics; the graphics are done on a pixmap
and are send to the graphic window with the command xset ("wshow"). The pixmap
is cleared with the command xset ("wwpc") or with the usual command xbasc ()

Pos : graphics device for Postscript printers

Fig : graphics device for the Xfig system

In fact, in many cases, one can ignore the existence of drivers and use the functions
xbasimp, xs2fig in order to send a graphic to a printer or in a file for the Xfig system.
For example with :

—-—>driver(’Pos’)

-->xinit(’foo.ps’)

-->plot(1:10)

-—>xend ()

-—>driver(’Rec’)

-=>plot(1:10)

-->xbasimp (0, ’fool.ps’)

CHAPTER 5. GRAPHICS 61

we get two identical Postscript files : *foo.ps’ and *fool.ps.0’ (the appending 0 is the
number of the active window where the plot has been done).

The default for plotting is the superposition; this can be avoided with the command
xbasc (window-number) which clears the recorded Scilab graphics command associated
with the window window-number and clears this window (see the warning below for the
difference between xbasc and xclear).

If you enlarge a graphic window, the command xbasr (window-number) is executed by
Scilab. This command clears the graphic window window-number and replays the graphic
commands associated with it. One can call this function manually, in order to verify the
associated recorded graphics commands.

Any number of graphics windows can be created with buttons or with the commands
xset or xselect. The environment variable DISPLAY can be used to specify an X11
Display or one can use the xinit function in order to open a graphic window on a specific
display.

5.3 2D Plotting

5.3.1 Basic 2D Plotting

The simplest 2D plot is plot (x,y) or plot(y): this is the plot of y as function of x where
x and y are 2 vectors; if x is missing, it is replaced by the vector (1,...,size(y)). If y
is a matrix, its rows are plotted. There are optional arguments.

A first example is given by the following commands and the result is represented on
figure 77:

-->//first example of plotting
--> t=(0:0.05:1)";
-=> ct=cos(2x}pixt);

--> plot2d(t,ct)

xinit(’d7-1.ps’); exec(’../diary/simple.code’) xend() First example of plottingd7-1
The generic 2D multiple plot is
plot2di(str,x,y, [style,strf,leg,rect,nax])

with i=missing,1,2,3,4.

For the different values of i we have:

i=missing : piecewise linear plotting

i=1: as previous with possible logarithmic scales

i=2 : piecewise constant drawing style

i=3: vertical bars

i=4 : arrows style (e.g. ode in a phase space)

-Parameter str : it is the string "abc" :

str is empty if i is missing.

a=e : means empty; the values of x are not used; (The user must give a dummy value
to x).

CHAPTER 5. GRAPHICS 62

a=o : means one; the x-values are the same for all the curves

a=g : means general.

b=1: a logarithmic scale is used on the X-axis

c=1 : a logarithmic scale is used on the Y-axis

-Parameters x,y : two matrices of the same size [nl,nc] (nc is the number of curves
and nl is the number of points of each curve)

-Parameter style : it is a real vector of size (1,nc); the style to use for curve j is
defined by size(j) (when only one curve is drawn style can specify the style and a
position to use for the caption).

-Parameter strf : it is a string of length 3 "xyz" corresponding to :

x=1 : captions displayed

y=1: the argument rect is used to specify the boundaries of the plot.
rect=[xmin,ymin,xmax,ymax]

y=2 : the boundaries of the plot are computed

y=0 : the current boundaries

z=1: an axis is drawnand the number of tics can be specified by the nax argument

z=2 : the plot is only surrounded by a box

-Parameter leg : it is the string of the captions for the different plotted curves . This
string is composed of fields separated by the @ symbol: for example ¢ ‘module@phase’’
(see example below). These strings are displayed under the plot with small segments
recalling the styles of the corresponding curves.

-Parameter rect : it is a vector of 4 values specifying the boundaries of the plot
rect=[xmin,ymin,xmax,ymax].

For different plots the simple commands without any argument show a demo (e.g
plot2d3()).

5.3.2 Specialized 2D Plottings

e champ : vector field in R?

e fchamp : for a vector field in R? defined by a function

fplot2d : 2D plotting of a curve described by a function

fgrayplot : gray level on a 2D plot

e errbar : creates a plot with error bars

5.3.3 Captions and Presentation
e xgrid : adds a grid on a 2D graphic
e xtitle : adds title and axis names on a 2D graphic
e titlepage : graphic title page

e plotframe : graphic frame with scaling and grid

The command plotframe is used to add a grid and graduations by choosing the number
of graduations and getting rounded numbers.

CHAPTER 5. GRAPHICS 63

5.3.4 Plotting Some Geometric Figures
Polylines Plotting

e xsegs : draws a set of unconnected segments
e xrect : draws a single rectangle

e xfrect : fills a single rectangle

e xrects : fills or draws a set of rectangles

e xpoly : draws a polyline

e xpolys : draws a set of polylines

e xfpoly : fills a polygon

e xfpolys : fills a set of polygons

e xarrows : draws a set of unconnected arrows
e xfrect : fills a single rectangle

e xclea : erases a rectangle on a graphic window

Curves Plotting

e xarc : draws an ellipsis
e xfarc : fills an ellipsis

e xarcs : fills or draws a set of ellipsis

5.3.5 Writing by Plotting

e xstring : draws a string or a matrix of strings
e xstringl : computes a rectangle which surrounds a string
e xstringb : draws a string in a specified box

e xnumb : draws a set of numbers

5.3.6 Manipulating the Plot and Graphics Context
Graphics Context

Some parameters of the graphics are controlled by a graphic context (for example the
line thickness) and others are controlled through graphics arguments. In the first example
(Figure (77?)), we use all the default arguments.

CHAPTER 5. GRAPHICS 64

e xset : to set graphic context values. Some examples of the use of xset :

(i)-xset ("use color",flag) changes to color or gray plot according to the values
(1 or 0) of flag.

(ii)-xset ("window" ,window-number) sets the current window to the window window-number
and creates the window if it doesn’t exist.

(iii)-xset ("wpos",x,y) fixes the position of the upper left point of the graphic
window.
The choice of the font, the width and height of the window, the driver... can be done
by xset.

e xget : to get informations about the current graphic context. All the values of the
parameters fixed by xset can be obtained by xget.

e x1font : to load a new family of fonts from the XWindow Manager

Some Manipulations
Coordinates transforms :

e isoview : isometric scale without window change
allows an isometric scale in the window of previous plots without changing the win-
dow size (see the example below).

e square : isometric scale with resizing the window

the window is resized according to the parameters of the command.
e scaling : scaling on data

e rotate : rotation

scaling and rotate executes respectively an affine transform and a geometric ro-
tation of a 2-lines-matrix corresponding to the (x,y) values of a set of points.

e xgetech, xsetech : change of scale inside the graphic window

The current graphic scale can be fixed by a high level plot command. You may want
to get this parameter or to fix it directly : this is the role of xgetech, xsetech .

5.4 Some Examples

We give here a sequence of commands corresponding to the different capabilities of the
2D plot and the generated figures. This first example corresponds to the figure ?7.

x=-%pi:0.3:%pi;

yl=sin(x) ;y2=cos(x) ;y3=x;

X=[x;x;x]; Y=[yl;y2;y3];

plot2d2("g00",X*,Y’);

xbasc();

plot2d1("g00",X’,Y’,[1 2 3]°,"101","captionl@caption2@caption3");
xtitle(["General";"Title"],"x-axis title","y-axis title");
xgrid([10,20]);

CHAPTER 5. GRAPHICS 65

xclea(0.5,-0.5,1.5,1.5);
titlepage("titlepage");
xstring(0.65,0.3, ["xstring after";"xclear"],0,1);

xinit(’examplel.ps’) x=-yl=sin(x);y2=cos(x);y3=x; X=[x;x;x]; Y=[y1;y2;y3]; plot2d2(”g00” , X", Y");
xend()

Simple 2D Plotfsimple

//example2.code x=-y1=sin(x);y2=cos(x);y3=x; X=[x;x;x]; Y=[y1;y2;y3]; plot2d2(”gnn”, X", Y’);
xbasc(); xinit(’example2.ps’) plot2d1(”gnn”, X’ Y’,[1 2 3]’,”101”,” caption1@caption2@caption3”);
xtitle([’ General”;” Title”],”x-axis title”,”y-axis title”); xgrid(); xclea(0.5,-0.5,1.5,1.5); tit-
lepage(”titlepage”); xstring(0.65,0.3,["xstring after”;”xclear”],0,1); Some Capabilities of
2D Plotfcapab

//example i=of the use of plotframe xinit(’frame.ps’) x=[-0.3:0.8:27.3]"; y=rand(x);
rect=[min(x),min(y),max(x),max(y)]; tics=[4,10,2,5]; //4 x-intervals and 2 y-intervals
plotframe(rect,tics,[['Plot with grid and automatic bounds’,’x’,’y’]); plot2d(x,y,-1,’000’)
xend() Use of plotframefpframe

We give now the sequence of the commands for obtaining the figure ?77.

// initialize default environment variables
plot(1:10)

xbasc()

// simple rectangle

xrect(0,1,3,1)

// f£illing a rectangle

xfrect(3.1,1,3,1)

// writing in the rectangle
xstring(0.5,0.5,"xrect(0,1,3,1)")

// writing black on black !
xstring(4.,0.5,"xfrect(3.1,1,3,1)")

// reversing the video
xset("alufunction",6)
xstring(4.,0.5,"xfrect(3.1,1,3,1)")
xset("alufunction",3)

// drawing a polyline

xv=[0 1 2 3 4]

yv=[2.5 1.5 1.8 1.3 2.5]
xpoly(xv,yv,"lines",1)
xstring(0.5,2.,"xpoly(xv,yv,""lines"",1)")
// drawing arrows

xa=[66 677 88 9 9 5]

ya=[2.5 1.5 1.5 1.8 1.8 1.3 1.3 2.5 2.5 2.5]
xarrows (xa,ya)

xstring(5.5,2.,"xarrows (xa,ya)")

// drawing a part of an ellipsis
xarc(0.,5.,4.,2.,0.,64%300.)
xstring(0.5,4,"xarc(0.,5.,4.,2.,0.,64%x300.)")
xfarc(5.,5.,4.,2.,0.,64*360.)
xset("alufunction",6)

CHAPTER 5. GRAPHICS 66

xstring(5.5,4.,"xfarc(5.,5.,4.,2.,0.,64%360.)")
xset("alufunction",3)

// writing a string

xstring(0.,4.5, "WRITING-BY-XSTRING()",-22.5)

// initialize default environment variables plot(1:10) xbasc() xinit(’example3x.ps’)
xrect(0,1,3,1) xfrect(3.1,1,3,1) xstring(0.5,0.5,”xrect(0,1,3,1)”) xstring(4.,0.5,”xfrect(3.1,1,3,1)”)
xset(”alufunction”,6) xstring(4.,0.5,”xfrect(3.1,1,3,1)”) xset(”alufunction”,3) xv=[01 2 3
4] yv=[2.5 1.5 1.8 1.3 2.5] xpoly(xv,yv,”lines” 1) xstring(0.5,2.,”xpoly(xv,yv,””lines””,1)")
xa=[56 67788995 ya=[25 1.5 1.5 1.8 1.8 1.3 1.3 2.5 2.5 2.5] xarrows(xa,ya)
xstring(5.5,2.,” xarrows(xa,ya)”) xarc(0.,5.,4.,2.,0.,64*300.) xstring(0.5,4,”xarc(0.,5.,4.,2.,0.,64*300.)”)
xfarc(5.,5.,4.,2.,0.,64*360.) xset(”alufunction”,6) xstring(5.5,4.,”xfarc(5.,5.,4.,2.,0.,64*360.)")
xset(”alufunction”,3) xstring(0.,4.5,” WRITING-BY-XSTRING()”,-22.5) xnumb([5.5 6.2
6.9],[5.5 5.5 5.5],[3 14 15],1) isoview(0,12,0,12) xarc(-5.,12.,5.,5.,0.,64*360.) xstring(-4.5,9.25,”isoview
+ xarc”,0.) xend|()

Geometric Graphics and Commentsfgeom

5.5 3D Plotting

5.5.1 Generic 3D Plotting

e plot3d : 3D plotting of a matrix of points : plot3d(x,y,z) with x,y,z 3 matrices, z
being the values for the points with coordinates x,y. Other arguments are optional

e plot3dl : 3d plotting of a matrix of points with gray levels

e fplot3d : 3d plotting of a surface described by a function; z is given by an external
z=f{(x,y)

e fplot3dl : 3d plotting of a surface described by a function with gray levels

5.5.2 Specialized 3D Plotting

e param3d : plots parametric curves in 3d space

e contour : level curves for a 3d function given by a matrix

e grayplotl0 : gray level on a 2d plot

e fcontour1O : level curves for a 3d function given by a function

e hist3d : 3d histogram

e secto3d : conversion of a surface description from sector to plot3d compatible data

e eval3d : evaluates a function on a regular grid. (see also feval)

CHAPTER 5. GRAPHICS 67

5.5.3 Mixing 2D and 3D graphics

When one uses 3D plotting function, default graphic boundaries are fixed, but in R3.
If one wants to use graphic primitives to add informations on 3D graphics, the geom3d
function can be used to convert 3D coordinates to 2D-graphics coordinates. The figure 77
illustrates this feature.

xinit(’d7-10.ps’);
r=(%pi) :-0.01:0;x=r.*cos(10*r) ;y=r.*sin(10*r) ;
deff (" [z]=surf (x,y)","z=sin(x)*cos(y)");
t=%pi*(-10:10)/10;
fplot3d(t,t,surf,35,45,"Xeyez", [-1,2,3]);
z=sin(x) .*cos(y);
[x1,y1]=geom3d(x,y,z);
xpoly(x1,y1l,"lines");
[x1,y1]=geom3d ([0,0], [0,0],[5,01);
xsegs(x1l,y1);
xstring(x1(1),y1(1),’ The point (0,0,0)’);

xinit(’d7-10.ps’); r=(deff(” [z]=surf(x,y)”,” z=sin(x)*cos(y)"); t=fplot3d(t,t,surf,35,45,” XQYQZ" [-
1,2,3]); z=sin(x).*cos(y); [x1,y1]=geom3d(x,y,z); xpoly(x1,y1,”lines”); [x1,y1l]=geom3d(]0,0],[0,0],[5,0]);
xsegs(x1,y1); xstring(x1(1),y1(1),” The point (0,0,0)’); 2D and 3D plotd7-10

5.5.4 Sub-windows

It is also possible to make multiple plotting in the same graphic window (Figure ?7).

xinit(’d7-8.ps’);
t=(0:.05:1)’ ;st=sin(2*%pi*t);
xsetech([0,0,1,0.5]);
plot2d2("onn",t,st);
xsetech([0,0.5,1,0.5]);
plot2d3("onn",t,st);
xsetech([0,0,1,1]);

xinit(’d7-8.ps’); t=(0:.05:1);st=sin(2*xsetech([0,0,1,0.5]); plot2d2(”onn”,t,st); xsetech([0,0.5,1,0.5]);
plot2d3(”onn” t,st); xsetech([0,0,1,1]); Use of xsetechd7-8

5.5.5 A Set of Figures

In this next example we give a brief summary of different plotting functions for 2D or 3D
graphics. The figure 5.1 is obtained and inserted in this document with the help of the
command Blatexprs.

//some examples
str_1=1ist();

//
str_1(1)=[’plot3d1();’

CHAPTER 5. GRAPHICS 68

’title=[’’plot3dl : z=sin(x)*cos(y)’’];’;
‘xtitle(title,?’” 27,27 22);°];
//
str_1(2)=[’contour();’;
’title=[’’contour ’’];’;
‘xtitle(title,?’’ 27,27 22);°];
//
str_1(3)=[’champ();’;
’title=[’’champ ’’];’;
‘xtitle(title,?’” 27,27 22);°];
//
str_1(4)=["t=%pi*(-10:10)/10;’;
’deff (’’ [z]=surf(x,y)’’,’ ’z=sin(x)*cos(y)’’);’;
‘rect=[-Y%pi,%pi,-%pi,%pi,-5,11;7;
‘z=feval(t,t,surf);’;
’contour(t,t,z,10,35,45,’°XQYeZ’’,[1,1,0] ,rect,-5);;
’plot3d(t,t,z,35,45,’’XQYeZ’’, [2,1,3] ,rect);’;
>title=[’’plot3d and contour ’’];’;
‘xtitle(title,’” 22,72 22);°];
//
for i=1:4,xinit(’d7all.ps’+string(i)’);
execstr(str_1(i)) ,xend() ;end

5.6 Printing and Inserting Scilab Graphics in IATEX

We describe here the use of programs (Unix shells) for handling Scilab graphics and prin-
ting the results. These programs are located in the sub-directory bin of Scilab.

5.6.1 Window to Paper

The simplest command to get a paper copy of a plot is to click on the print button of
the ScilabGraphic window.

5.6.2 Creating a Postscript File

We have seen at the beginning of this chapter that the simplest way to get a Postscript
file containing a Scilab plot is :

-->driver (’Pos’)
-->xinit (’foo.ps’)
-—>plot3d1Q);
-->xend ()

—-—>driver(’Rec’)

CHAPTER 5. GRAPHICS

69

Figure 5.1: Group of figures

CHAPTER 5. GRAPHICS 70

-->plot3d1()

-->xbasimp (0, ’fool.ps’)

The Postscript files (foo.ps or fool.ps) generated by Scilab cannot be directly sent
to a Postscript printer, they need a preamble. Therefore, printing is done through the use
of Unix scripts or programs which are provided with Scilab. The program Blpr is used to
print a set of Scilab Graphics on a single sheet of paper and is used as follows :

Blpr string-title filel.ps file2.ps > result
You can then print the file result with the classical Unix command :
lpr -Pprinter-name result

or use the ghostview Postscript interpreter on your Unix workstation to see the result.
You can avoid the file result with a pipe, replacing > result by the printing command
| 1pr or the previewing command | ghostview -.
The best result (best sized figures) is obtained when printing two pictures on a single

page.

5.6.3 Including a Postscript File in [ATpX

The Blatexpr Unix shell and the programs Batexpr2 and Blatexprs are provided in
order to help inserting Scilab graphics in IATRX.
Taking the previous file foo.ps and typing the following statement under a Unix shell :

Blatexpr 1.0 1.0 foo.ps

creates two files foo.epsf and foo.tex. The original Postscript file is left unchanged. To
include the figure in a IATpX document you should insert the following IATEX code in
your IATRX document :

\input foo.tex
\dessin{The caption of your picture}{The-label}

You can also see your figure by using the Postscript previewer ghostview.

The program Blatexprs does the same thing: it is used to insert a set of Postscript
figures in one IATpXpicture.

In the following example, we begin by using the Postscript driver Pos and then initialize
successively 4 Postscript files figl.ps, ..., fig4.ps for 4 different plots and at the end
return to the driver Rec (X11 driver with record).

-->//multiple Postscript files for Latex
—-—>driver(’Pos’)

-—=>
__>t=%pi*(—10110)/1o;

CHAPTER 5. GRAPHICS 71

-—>

-->plot3di(t,t,sin(t) **cos(t),35,45,’X@Y0Z’,[2,2,4]);
-->xend ()

-—>

-—>contour(1:5,1:10,rand(5,10),5);

-=>xend ()

-—>

-—>champ(1:10,1:10,rand(10,10) ,rand(10,10));
-->xend ()

-—>

-=>t=Ypi*(-10:10)/10;

-->deff (’ [z]=surf (x,y)’,’z=sin(x)*cos(y)’);
-->rect=[-%pi,%pi,-%pi,%pi,-5,1];
-—>z=feval(t,t,surf);
-->contour(t,t,z,10,35,45,°X0Y@Z’,[1,1,0] ,rect,-5);
-->plot3d(t,t,z,35,45,’XeYez’, [2,1,3] ,rect);
-->title=[’plot3d and contour ’];

-->xtitle(title,’ 7, ?);

-->xend ()

-—>
-—>driver(’Rec’)

Then we execute the command :
Blatexprs multi figl.ps fig2.ps fig3.ps fig4.ps

and we get 2 filesmulti.tex and multi.ps and you can include the result in a IATEX source
file by :

CHAPTER 5. GRAPHICS 72

Figure 5.2: Blatexp2 Example

\input multi.tex
\dessin{The caption of your picture}{The-label}

Note that the second line dessin. .. is absolutely necessary and you have of course to
give the absolute path for the input file if you are working in another directory (see below).
The file multi.tex is only the definition of the command dessin with 2 parameters : the
caption and the label; the command dessin can be used with one or two empty arguments
¢¢ ¢ if you want to avoid the caption or the label.

The Postscipt files are inserted in IATpX with the help of the \special command and
with a syntax that works with the dvips program.

The program Blatexpr?2 is used when you want two pictures side by side.

Blatexpr2 Fileres filel.ps file2.ps

It is sometimes convenient to have a main IATpX document in a directory and to
store all the figures in a subdirectory. The proper way to insert a picture file in the main
document, when the picture is stored in the subdirectory figures, is the following :

\def\Figdir{figures/} % My figures are in the {\tt figures/ } subdirectory.
\input{\Figdir fig.tex}
\dessin{The caption of you picture}{The-label}

The declaration \def\Figdir{figures/} is used twice, first to find the file fig.tex
(when you use latex), and second to produce a correct pathname for the special
IATRX command found in fig.tex. (used at dvips level).

-WARNING : the default driver is Rec, i.e. all the graphic commands are recorded,
one record corresponding to one window. The xbasc() command erases the plot on the
active window and all the records corresponding to this window. The clear button has
the same effect; the xclear command erases the plot but the record is preserved. So you
almost never need to use the xbasc() or clear commands. If you use such a command
and if you re-do a plot you may have a surprising result (if you forget that the environment
is wiped out); the scale only is preserved and so you may have the “window-plot” and the
“paper-plot” completely different.

CHAPTER 5. GRAPHICS 73

Figure 5.3: Encapsulated Postscript by Using Xfig

5.6.4 Postscript by Using Xfig

Another useful way to get a Postscript file for a plot is to use Xfig. By the simple command
xs2fig(active-window-number,file-name) you get a file in Xfig syntax.

This command needs the use of the driver Rec.

The window ScilabGraphicO being active, if you enter :

-=>t=-Ypi:0.3:%pi;
-->plot3d1i(t,t,sin(t) ’*cos(t),35,45,’XeY0Z’,[2,2,4]);
-->xs2fig(0, ’demo.fig’);
you get the file demo.fig which contains the plot of window 0.
Then you can use Xfig and after the modifications you want, get a Postscript file that

you can insert in a INTRpX file. The following figure is the result of Xfig after adding some
comments.

CHAPTER 5. GRAPHICS 74

5.6.5 Encapsulated Postscript Files

As it was said before, the use of Blatexpr creates 2 files : a .tex file to be inserted in the
INTEX file and a .epsf file.

It is possible to get the encapsulated Postscript file corresponding to a . ps file by using
the command BEpsf.

Notice that the .epsf file generated by Blatexpr is not an encapsulated Postscript
file : it has no bounding box and BEpsf generates a .eps file which is an encapsulated
Postscript file with a bounding box.

Chapter 6

Maple to Scilab Interface

To combine symbolic computation of the computer algebra system Maple with the nume-
rical facilities of Scilab, Maple objects can be transformed into Scilab functions. To assure
efficient numerical evaluation this is done through numerical evaluation in Fortran. The
whole process is done by a Maple procedure called maple2scilab.

6.1 Maple2scilab

The procedure maple2scilab converts a Maple object, either a scalar function or a ma-
trix into a Fortran subroutine and writes the associated Scilab function. The code of
maple2scilab is in the directory SCIDIR/maple.

The calling sequence of maple2scilab is as follows:
maple2scilab(function-name,object,args)

e The first argument, function-name is a name indicating the function-name in Scilab.

e The second argument object is the Maple name of the expression to be transferred
to Scilab.

e The third argument is a list of arguments containing the formal parameters of the
Maple-object object.

When maple2scilab is invoked in Maple, two files are generated, one which contains
the Fortran code and another which contains the associated Scilab function. Aside their
existence, the user has not to know about their contents.

The Fortran routine which is generated has the following calling sequence:
<Scilab-name>(x1,x2,...,xn,matrix)
and this subroutine computes matrix(i,j) as a function of the arguments x1,x2,...,xn.
Each argument can be a Maple scalar or array which should be in the argument list. The
Fortran subroutine is put into a file named <Scilab-name>.f, the Scilab-function into a
file named <Scilab-name>.sci. For numerical evaluation in Scilab the user has to compile
the Fortran subroutine, to link it with Scilab (e.g. Menu-bar option ’'link’) and to load
the associated function (Menu-bar option ’getfc’). Information about link operation is
given in Scilab’s manual: Fortran routines can be incorporated into Scilab by dynamic link
or through the interf.f file in the default directory. Of course, this two-step procedure
can be automatized using a shell-script (or using unix in Scilab). Maple2scilab uses the
“Macrofort” library which is in the share library of Maple.

75

CHAPTER 6. MAPLE TO SCILAB INTERFACE 76

6.1.1 Simple Scalar Example
Maple-Session

> read(‘maple2scilab.maple‘):
> f:=b+a*sin(x);

f := b + a sin(x)

> maple2scilab(’f_m’,f, [x,a,b]);

Here the Maple variable f is a scalar expression but it could be also a Maple vector or
matrix. ’f_m’ will be the name of £ in Scilab (note that the Scilab name is restricted
to contain at most 6 characters). The procedure maple2scilab creates two files: f_m.f
and f_m.sci in the directory where Maple is started. To specify another directory just
define in Maple the path : rpath:=¢/work/‘; then all files are written in the sub-directory
work. The file £_m.f contains the source code of a stand alone Fortran routine which is
dynamically linked to Scilab by the function f_m in defined in the file £_m.sci.

Scilab Session

-->unix(’make f_m.o’);
-->link(’f_m.o’,’f_m’);

linking _f_m_ defined in f_m.o
-—>getf(’f_m.sci’,’c’)

-—>f_m(%pi,1,2)
ans =

6.1.2 Matrix Example

This is an example of transferring a Maple matrix into Scilab.

Maple Session

> with(linalg) :read(‘maple2scilab.maple‘):
> x:=vector(2) :par:=vector(2):

> mat:=matrix (2,2, [x[1] " 2+par[1],x[1]*x[2],par[2],x[2]]);

[2]
[x[1] + par[1] =x[1] x[2]]
mat := []
[par [2] x[2]]

CHAPTER 6. MAPLE TO SCILAB INTERFACE 7

> maple2scilab(’mat’,mat, [x,par]);

Scilab Session

-->unix(’make mat.o’);
-->1ink(’mat.o’,’mat’)

linking _mat_ defined in mat.o
-->getf(’mat.sci’,’c’)
-->par=[50;60] ;x=[1;2];

-->mat (x,par)
ans =

! 51. 2.1
! 60. 2.1

Generated code Below is the code (Fortran subroutines and Scilab functions) which is auto-
matically generated by maple2scilab in the two preceding examples.

Fortran routines

c SUBROUTINE f_m

subroutine f_m(x,a,b,fmat)
doubleprecision x,a,b
implicit doubleprecision (t)
doubleprecision fmat(1,1)

fmat(1,1) = b+a*sin(x)
end

c SUBROUTINE mat

subroutine mat (x,par,fmat)
doubleprecision x,par(2)
implicit doubleprecision (t)
doubleprecision fmat(2,2)
t2 = x(1)*x*2
fmat(2,2) = x(2)

fmat(2,1) = par(2)
fmat(1,2) = x(1)*x(2)
fmat(1,1) = t2+par(1)

end

CHAPTER 6. MAPLE TO SCILAB INTERFACE

Scilab functions

function [var]=f_m(x,a,b)
var=fort(’f_m’,x,1,’d’,a,2,’d4’,b,3,’d’,’out’, [1,1],4,°d?)
//end

function [var]=fmat (x,par)
var=fort(’fmat’,x,1,’d’,par,2,’d’,’out’, [2,2],3,°d’)
//end

78

Appendix A

A demo session

We give here the Scilab session corresponding to the first demo.

-->//SCILAB OBJECTS 1. SCALARS

-—>a=1 //constant
a =
1.
-=>1== //boolean
ans =
T
-->’string’ //character string
ans =
string
-->z=poly(0,’z’) // polynomial with variable ’z’ and with one root at zero
Z =
z

-->p=1+3%z+4.5%z"2 //polynomial
p =

2
1 + 3z + 4.5z

-->r=z/p //rational

79

APPENDIX A. A DEMO SESSION 80

1 + 3z + 4.5z
-->//SCILAB OBJECTS 2. MATRICES
-—>a=[a+1 2 3

0 0 atan(1)
59 -1] //constant matrix

! 2. 2. 3. !
! 0. 0. 0.7853982 !
! 5. 9. - 1. !

-=>b=[%t,%f] //boolean matrix
b —3

' TF !

-->mc=[’this’,’is’;
’a’ ,’matrix’] //matrix of strings

mc =
'this 1is !
! !
la matrix !
-=>mp=[p,1-z;
1,z*p] //polynomial matrix
mp =
! 2 !
! 1+ 3z + 4.5z 1 -2z !
! !
! 2 3!
! 1 z + 3z + 4.5z !
-=>mp=[p 1-z]
mp =
! 2 !
! 1+ 3z + 4.5z 1 -z !
-=>mp=[mp;1 1+z*p] //matrix polynomial
mp =
! 2 !

! 1 + 3z + 4.5z 1 -z !

APPENDIX A. A DEMO SESSION

! 2 31
! 1 1+z+ 3z + 4.5z !

-=>f=mp/poly([1+%i 1-%i 1],’z’) //ratiomnal matrix
f =

! 2 !
! 1 + 3z + 4.5z -1 !
| e |
! 2 3 2 !
' =2 + 4z - 3z + z 2 -2z + 2z !
]]
| 2 3 1
! 1 1+z+ 3z + 4.5z |
| e]
! 2 3 2 3 1
! =2 + 4z - 3z + z -2+ 4z - 3z + z !

-->//SCILAB OBJECTS 3. LISTS

-->1=1list(a,-(1:5), mp, [’this’,’is’;’a’,’1list’]) //1list
1 —3

1>1
! 2. 2. 3. !
! 0. 0. 0.7853982 !
! 5. 9. -1. !
1>2
-1 -2 - 3. -4 - 5.1
1>3
! 2 !
! 1 + 3z + 4.5z 1 -z !
! !
! 2 31
! 1 1+z+ 3z + 4.5z !
1>4
Ithis is !

la list !

APPENDIX A. A DEMO SESSION 82

-—>b=[1 0;0 1;0 0];c=[1 -1 0] ;d=0%*c*b;x0=[0;0;0];

-->sl=syslin(’c’,a,b,c,d,x0) //Linear system in state-space representation.
sl =

s1(1) (state-space system:)

1ss
s1(2) = A matrix =
! 2. 2. 3. !
! 0. 0. 0.7853982 !
! 5. 9. - 1. !
s1(3) = B matrix =
! 1 0. !
! 0. 1. 1!
! 0. 0. !
s1(4) = C matrix =
! 1 - 1. 0. !
s1(5) = D matrix =
! 0. 0. !
s1l(6) = X0 (initial state) =
| 0. !
| 0. !
| 0. |
s1(7) = Time domain =
c
-—>slt=ss2tf(sl) // Transfer matrix
slt =
! 2 2 !
! - 10.995574 + s + s 46 + 3s - s !
| I
! 2 3 2 !

! 6.2831853 - 24.068583s - s + s 6.2831853 - 24.068583s - s !

APPENDIX A. A DEMO SESSION

! 3
] + s
-=>// OPERATIONS
-—>y=1:5;v*v’ //constant matrix

ans =

55.

—-=>mp’ *mp+eye //polynomial matrix

ans =

! 2 3 4 2

! 3 + 6z + 18z + 27z + 20.25z 2 + 3z + 4.5z

!

! 2 2 3 4 5 6
! 2 + 3z + 4.5z 3 + 8z + 15z + 18z + 27z + 20.25z
—=>mpl=mp(1,1)+4.5%%i //complex

mpl =
real part

2

1+ 3z + 4.5z
imaginary part

4.5
-—>fi=c*(z*eye-a) " (-1)*b; //transfer function evaluation
-—>f(:,1)*fi //rationals
ans =

column 1

! 2 3 4
! - 10.995574 - 31.986723z - 45.480084z + 7.5z + 4.5z
! ___
! 2 3 4
' - 12.566371 + 73.269908z - 113.12389z + 72.488936z - 17.068583z

! 5 6
! -4z + z

APPENDIX A. A DEMO SESSION

! - 10.995574 + z + z

! 2 3 4
! - 12.566371 + 73.269908z - 113.12389z + 72.488936z — 17.068583z
! 5 6
! -4z + z
column 2
! 2 3 4
! 46 + 141z + 215z + 10.5z - 4.5z
| o e e e e e e e e e
! 2 3 4
I - 12.566371 + 73.269908z - 113.12389z + 72.488936z - 17.068583z
! 5 6
! -4z + z
!
! 2
! 46 + 3z - z
! ___
! 2 3 4
I - 12.566371 + 73.269908z - 113.12389z + 72.488936z - 17.068583z
! 5 6
! -4z + z
-->m=[mp -mp; mp’ mp+eyel //usual Matlab syntax for polynomials
m =
column 1 to 3
! 2 2!
! 1 + 3z + 4.5z 1 -z -1-3z - 4.5z !
! !
! 2 3 !
! 1 1 +2z+ 3z + 4.5z -1 !
! !
! 2 2!
! 1 + 3z + 4.5z 1 2 + 3z + 4.5z !
! !
! 2 3 !
! 1 -z 1 +2z+ 3z + 4.5z 1 !

column 4

APPENDIX A. A DEMO SESSION

! 2 3
' =1 -2z -3z - 4.5z

! 2 3
! 2+ 2z + 3z + 4.5z

-=>[fi, fi(:,1)]
ans =

column 1 to 2

// ... or rationals

! - 10.995574 + z + z 46 + 3z - z

! 6.2831853 - 24.068583z - z + z 6.2831853 - 24.068583z - z

! 3
! + z

column 3

! - 10.995574 + z + z !

! 6.2831853 - 24.068583z - z + z !

-->f=syslin(’c’,f);
——>num=f (2) ;den=£f (3) ;
-=>//

-—>inv(a)
ans =

! 1.125 - 4.6154933
! - 0.625 2.705634
! 0. 1.2732395

-=>inv(mp)
ans =

! 2

//operation on transfer matrix

SOME NUMERICAL PRIMITIVES

//Inverse

- 0.25 !
0.25 !
0. !

//Inverse

3

! -1-z-3z - 4.5z 1 -z

APPENDIX A. A DEMO SESSION 86

! 2 3 4 5 2 3 4 !
! - bz - 10.5z - 18z - 27z - 20.25z - 5z - 10.5z - 18z - 27z !
! 5 I
! - 20.25z !
! I
! 2 !
! 1 -1-3z - 4.5z !
| I
! 2 3 4 5 2 3 4 !
! - bz - 10.5z - 18z - 27z - 20.26z - 5z - 10.5z - 18z - 27z !
! 5 !
! - 20.25z !
-=>inv(sl*sl’) //Product of two linear systems and inverse
ans =

ans(1) (state-space system:)
1ss

ans(2) = A matrix =

! 5.9830447 - 2.7428339 7.3183618 - 4.2885191 !
! 2.6071355 6.0712325 - 7.7859481 - 5.4755694 !
! 0. 0. - 4.9854125 - 0.7866233 !
! 0. 0. 0.5793044 - 5.0688648 !

ans(3) = B matrix

! - 12.503402 !
! - 6.1225032 !
! 2.1610817 !
! - 2.2230828 !

ans(4) = C matrix

! - 0.9983022 4.0965198 - 7.074889 0.1816586 !

ans(5) = D matrix =

2
2.4292037 + 1.232D-16s + 0.5s

ans(6) = X0 (initial state) =

APPENDIX A. A DEMO SESSION 87

! 0. !
! 0. !
! 0. !
ans(7) = Time domain =
c
-->w=ss2tf (ans) //Transfer function representation
W —3
2 3 4
19.739209 - 151.22737s + 283.36517s + 30.351769s - 23.568583s
5 6
- s + 0.5s
2 3 4
1118.4513 + 127.00443s - 51.995574s - 2s + s
-—>inv(ss2tf(sl) *ss2tf(sl’)) //Product of two transfer functions and inverse
ans =
2 3 4
39.478418 - 302.45474s + 566.73034s + 60.703538s - 47.137167s
5 6
- 2s + s
2 3 4

2236.9027 + 254.00885s - 103.99116s - 4s + 2s

-—>clean(w-ans)

ans =
0
|
-->n=contr(a,b) //Controllability
n =
3.
-->k=ppol(a,b, [-1-%i -1+%i -11) //Pole placement
k =

! 0.1832061 - 0.3358779 1.740458 !
! 2.7463953 3.8167939 1.7650419 !

APPENDIX A. A DEMO SESSION

-->poly(a-b*k,’z’)-poly ([-1-%i -1+%i -1],’z’) //Check. ..
ans =

2
- 4.907D-14 - 6.306D-14z - 1.599D-14z

-->s=5in(0:0.1:5%%pi);

-—>ss=fft(s(1:128),-1); //FFT
-—>xbasc();
-->plot2d3("enn",1,abs(ss)’); //simple plot

-->x=1lyap(a,diag([1 2 3]),’cont’) //Lyapunov equation
X =

! - 1.49582561 - 4.3299851 0.6983300 !
! - 4.3299851 - 0.3504060 1.07333 !
! 0.6983300 1.07333 1.4379815 !
-->// ON LINE DEFINITION OF MACRO

-—>deff (’ [x]=fact(n)’,’if n=0 then x=1,else x=n*fact(n-1),end’)

-->10+fact(5)
ans =

130.

-—>// OPTIMIZATION

-->deff (’ [f,g,ind]=rosenbro(x,ind)’, ’a=x(2)-x(1)"2 , b=1-x(2) ,...

£=100.%a"2 + b"2 , g(1)=-400.*x(1)*a , g(2)=200.*%a -2.%b ’);

-->comp(rosenbro) ; [f,x,gl=optim(rosenbro, [2;2],’qn’)
end of optimization

g =
1.0D-13 *
! 0.4440892 !

! - 0.2242651 !
X =

88

APPENDIX A. A DEMO SESSION

1.245D-30
-—>// SIMULATION

-—>a=rand(3,3)
a —3

! 0.3616361 0.4826472 0.5015342 !
! 0.2922267 0.3321719 0.4368588 !
! 0.5664249 0.5935095 0.2693125 !
-—>e=exp(a)
e =

! 1.8016766 0.9861359 0.9295708 !
! 0.6462788 1.7366226 0.7731203 !
! 1.0024892 1.1047133 1.7455217 !

-=>deff (’ [ydot]l=£f(t,y)’, ’ydot=a*y’) ;comp(f)

-->e(:,1)-0de([1;0;0],0,1,f)
ans =

! - 6.303D-8 !
! - 5.028D-8 !
! - 6.558D-8 !
-->// SYSTEM DEFINITION

-->s=poly(0,’s’)
S =

-->h=[1/s,1/(s+1);1/s/(s+1),1/(s+2)/(s+2)]
h =

APPENDIX A. A DEMO SESSION

-—>w=tf2ss(h);

—-—>ss2tf (w)

ans =

! 1 1

! __________________

! - 6.280D-15 + s 1+ s

!

! 1 + 4.119D-14s 1 + 1.692D-14s
! ______________________________
! 2 2
! 2.042D-14 + s + s 4 + 4s + s
-->hil=clean(ans)

hl1 =

] 1 1]

| - ee—ee |

! s 1 + s !

| 1

! 1 1 !

Il ———— ————— !

| 2 2 1

! s + s 4 + 4s + s |
-—>// EXAMPLE: SECOND ORDER SYSTEM ANALYSIS

-->sl=syslin(’c’,1/(s*s+0.2%s+1))
sl =

-->instants=0:0.05:20;

-=>// step response:
-->y=csim(’step’,instants,sl);
-->xbasc() ;plot2d(instants’,y’)

-=>// Delayed step response

-—>deff (’ [in]=u(t)’,’if t<3 then in=0;else in=1;end’);

90

APPENDIX A. A DEMO SESSION 91

-->comp (u) ;
-->yl=csim(u, instants,sl) ;plot2d(instants’,y1’);

-=>// Impulse response;
-->yi=csim(’imp’,instants,sl) ;xbasc();plot2d(instants’,yi’);
-—>yil=csim(’step’,instants,s*sl);plot2d(instants’,yil’);
-=>// Discretization

-->dt=0.05;

-->sld=dscr(tf2ss(sl),0.05);

-=>// Step response

-—>u=ones(instants);

Warning :redefining function: u

-->yyy=flts(u,sld);

-->xbasc() ;plot(instants,yyy)

-=>// Impulse response

—->u=0%*ones (instants) ;u(1)=1/dt;

-—>yy=flts(u,sld);

-->xbasc() ;plot (instants,yy)

-=>// system interconnexion

-—>wi=[w,w];

-->clean(ss2tf (wl))

ans =

| 1 1 1 1 !
' - - |
| s 1+ s S 1+s !
| |
| 1 1 1 1

APPENDIX A. A DEMO SESSION

! s + s 4 + 4s + s s + s 4 + 4s + s
-—>w2=[w;w];
-->clean(ss2tf (w2))

ans =

] 1 1]
| - e |
! s 1+ s !
]]
! 1 1 !
I . e]
] 2 2 1
! s + s 4 +4s + s |
]]
] 1 1]
| - e |
! s 1+ s !
]]
! 1 1 !
| e e]
] 2 2 1
! s + s 4 +4s + s |
-->// change of variable

-->z=poly(0,’z’);

-—>horner(h, (1-z)/(1+z)) //bilinear transform
ans =

! 1+ z 1+ z !
|l ——_— e]
! 1 -2z 2 !
]]
] 2 2 1
! 1 +2z+ 2z 1 +2z+ 2z !
| e e]
! 2!
! 2 - 2z 9+ 6z +z !
-=>// PRIMITIVES
-—>H=[1. 1 1 0.;

2. - 1. 0. 1;

1. 0. 1 1.;

0. 1. - 11;

APPENDIX A. A DEMO SESSION 93

-->ww=spec (H)
ww o=

! 2.7320508 !
! - 2.7320508 !

! 0.7320508 !
! - 0.7320508 !

-->// STABLE SUBSPACES

-—>[X,d]=schur(H,’cont’) ;

——>X’ *H*X
ans =

I - 2.7320508 0. 2.554D-15 1. !
! 0. - 0.7320508 1. 0. !
! 0. - 1.665D-15 2.7320508 0. !
! 0. 0. 0. 0.7320508 !
-—>[X,d]=schur(H,’disc’);

—=>X?xH*xX

ans =

! 0.7320508 0. 0. 1. !
! 0. - 0.7320508 1. 0. !
! 0. - 1.776D-15 2.7320508 0. !
! 0. 0. - 1.554D-15 - 2.7320508 !

-->//Selection of user-defined eigenvalues (# 3 and 4 here);
-->deff (’ [flgl=sel(x)’,’flg=0,ev=x(2)/x(3),if abs(ev-ww(3))<0.0001|abs(ev-ww(4))<0.00001

-->[X,d]=schur (H,sel)

d =

2.
X =
I = 0.5705632 - 0.2430494 0.6640233 - 0.4176813 !
1 - 0.4176813 0.6640233 0.2430494 0.5705632 !
! 0.5705632 - 0.2430494 0.6640233 0.4176813 !
! 0.4176813 0.6640233 0.2430494 - 0.5705632 !

—->X? *xHxX
ans =

APPENDIX A. A DEMO SESSION

! 0.7320508 0. 0.
! 0. - 0.7320508 1.
! 0. - 1.776D-15 2.7320508
! 0. 0. - 1.554D-15
-=>// With matrix pencil
-->[X,d]=gschur (H,eye(H),sel)

d =

2.

X =
! 0.5705632 0.2430494 0.6640233
! 0.4176813 - 0.6640233 0.2430494
! - 0.5705632 0.2430494 0.6640233
! - 0.4176813 - 0.6640233 0.2430494
—=>X’ *H*X

ans =
! 0.7320508 0. 1.596D-15
! 0. - 0.7320508 - 1.
! 1.277D-15 0. 2.7320508
! 0. 0. - 1.665D-15
-->// block diagonalization
-->[ab,x,bs]=bdiag(H);
-=>inv(x)*H*x

ans =
! 2.7320508 0. 0.
! - 3.331D-15 - 2.7320508 1.443D-15
! - 1.762D-15 0. 0.7320508

! - 1.721D-15 - 1.665D-15 0.

-=>// Matrix pencils
-—>E=rand(3,2)*rand (2, 3);

-->A=rand (3,2)*rand(2,3);
-->s=poly(0,’s’);

-—>w=det (s*xD-A) //determinant

N O O

o O O O

N O O

1
0.
0.
0

.7320508 !

.4176813 !
.5705632 !
.4176813 !
.5705632 !

.7320508 !

.332D-15 !
!
!
.7320508 !

94

APPENDIX A. A DEMO SESSION

2
- 0.0801176s + 0.0423727s

-->[al,bel=gspec(A,E);

-->al./(be+%eps*ones(be))
ans =

! 1.576D+15 !
! 1.8907826 !
! - 8.934D-17 !

-—>roots(w)
ans =

! 0 !
! 1.8907826 !

-=>[Ns,d]=coffg(s*D-A); //inverse of polynomial matrix;

-->clean(Ns/d*(s*D-4))

ans =

! 1 0 o !
] - - - 1
! 1 1 1 !
] I
! 0 1 o !
] - - - 1
! 1 1 1 !
] I
! 0 0 1 !
] - - - 1
! 1 1 1 !

-->[Q,M,i1]=pencan(E,A); // Canonical form;

rank A"k rcond
2. 0.347D+0
rank A"k rcond
2. 0.552D+0
—=>M*E*Q
ans =
! 1. 0. 0. !

! - 8.188D-16 1. 0. !

APPENDIX A. A DEMO SESSION

! 0. - 2.032D-15 0. !

——>M*A*Q
ans =

! 1.8609512 0.4018602 - 1.110D-15 !
! 0.1381447 0.0298314 2.283D-15 !

! 0. 0. 1. !
-=>// PAUSD-RESUME
-—>write(%io(2),’pause command...’);

pause command...

-—>write(%io(2),’TO CONTINUE...’);
TO CONTINUE...

-—>write(%io(2),’ENTER ’’resume (or return) or click on resume!!’’’);
ENTER ’resume (or return) or click on resume!!’

-->pause;
-1->resume;
-=>// CALLING EXTERNAL ROUTINE
-—>foo=[" subroutine foo(a,b,c)’;
? c=atb’;
’ end’ 1;

-—>unix_s(’\rm foo.f’)
-—>write(’foo.f’,fo0);

-—>unix_s(’make foo0.0’) //Compiling. .. (needs fortran compiler)

-->//NEXT COMMAND LINE WILL DO THE LINK OF THE ROUTINE foo WITH SCILAB
-->//THIS COMMAND MAY FAIL FOR SystemV COMPILED VERSIONS OF SCILAB
-->//BECAUSE LINK NEEDS THE LIBRARIES (SEE THE HELP OF "LINK" COMMAND)
-->1ink(’foo0.0’,’fo0’) //Linking to Scilab

l-—error 9999

Dynamic link not implemented

96

APPENDIX A. A DEMO SESSION

I-—error 73
error while linking

-->//5+7 by fortran
-->fort(’foo0’,5,1,’r’,7,2,’r’,’0ut’,[1,11,3,°’r’)

|-—error
subroutine not found : foo

50

97

List of Figures

2.1 Inter-Connection of Linear Systems, 32
4.1 Inter-Connected Systems oo 54
51 Group of figures 69
5.2 Blatexp2 Example 72
5.3 Encapsulated Postscript by Using Xfig 73

98

